×

Farthest points on flat surfaces. (English) Zbl 1407.53074

A recent result by the authors states that on most (in the sense of Baire categories) Alexandrov surfaces most points have a unique farthest point. Notable exceptions are flat tori and flat Klein bottles. An elementary treatment of the farthest point map for these surfaces is the topic of this paper.
Denote by \(F_p\) the set of all farthest points of \(p\) and by \(F^n_p\) the set of all farthest points of \(p\) which are joined to \(p\) be exactly \(n\) segments. If the flat torus is obtained by identifying opposite sides of a parallelogram, then \(\# F_p = \# F_p^3 = 2\) in general and \(\# F_p = \# F_p^4 = 1\) precisely for rectangles.
The case of a flat Klein bottle, obtained by suitable identification of opposite sides in a rectangle, is more complicated. Results not only depend on the side lengths but also on the point’s distance to the main geodesics. In all cases one has \(\# F_p = \# F_p^n = k\) for some \(n \in \{3, 4\}\) and some \(k \in \{1, 2\}\).

MSC:

53C45 Global surface theory (convex surfaces à la A. D. Aleksandrov)
57M50 General geometric structures on low-dimensional manifolds
57M60 Group actions on manifolds and cell complexes in low dimensions

References:

[1] Croft, H.T., Falconer, K.J., Guy, R.K.: Unsolved Problems in Geometry. Springer, New York (1991) · Zbl 0748.52001 · doi:10.1007/978-1-4612-0963-8
[2] Zamfirescu, T., On some questions about convex surfaces, Math. Nach., 172, 313-324, (1995) · Zbl 0833.53004 · doi:10.1002/mana.19951720122
[3] Vîlcu, C., Properties of the farthest point mapping on convex surfaces, Rev. Roum. Math. Pures Appl., 51, 125-134, (2006) · Zbl 1120.52002
[4] Rouyer, J., Antipodes sur un tétraèdre régulier, J. Geom., 77, 152-170, (2003) · Zbl 1032.52004 · doi:10.1007/s00022-003-1617-y
[5] Nikonorov, YG; Nikonorova, YV, The intrinsic diameter of the surface of a parallelepiped, Discrete Comput. Geom., 40, 504-527, (2008) · Zbl 1165.52004 · doi:10.1007/s00454-007-9037-7
[6] Itoh, J-I; Rouyer, J.; Vîlcu, C., Antipodal convex hypersurfaces, Indag. Math. New Ser., 19, 411-426, (2008) · Zbl 1187.52004 · doi:10.1016/S0019-3577(08)80010-9
[7] Itoh, J-I; Vîlcu, C., What do cylinders look like?, J. Geom., 95, 41-48, (2009) · Zbl 1187.52002 · doi:10.1007/s00022-009-0012-8
[8] Vîlcu, C., On two conjectures of Steinhaus, Geom. Dedicata, 79, 267-275, (2000) · Zbl 0971.52003 · doi:10.1023/A:1005265910153
[9] Vîlcu, C.; Zamfirescu, T., Symmetry and the farthest point mapping on convex surfaces, Adv. Geom., 6, 345-353, (2006) · Zbl 1118.52005 · doi:10.1515/ADVGEOM.2006.023
[10] Rouyer, Joël, Steinhaus Conditions for Convex Polyhedra, 77-84, (2016), Cham · Zbl 1373.52006 · doi:10.1007/978-3-319-28186-5_7
[11] Vîlcu, C.; Zamfirescu, T., Multiple farthest points on Alexandrov surfaces, Adv. Geom., 7, 83-100, (2007) · Zbl 1124.53029 · doi:10.1515/ADVGEOM.2007.006
[12] Rouyer, J., Vîlcu, C.: Farthest points on most Alexandrov surfaces. Adv. Geom. arXiv:1412.1465 [math.MG] (to appear)
[13] Burago, Y.; Gromov, M.; Perel’man, G., A. D. Alexandrov spaces with curvature bounded below, Russ. Math. Surv., 47, 1-58, (1992) · Zbl 0822.20043 · doi:10.1070/RM1992v047n02ABEH000877
[14] Shiohama, K.: An Introduction to the Geometry of Alexandrov Spaces. Lecture Notes Series, Seoul National University, vol. 8 (1992) · Zbl 0826.53001
[15] Shiohama, K., Tanaka, M.: Cut loci and distance spheres on Alexandrov surfaces, Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992). In: Séminaires Congreè, vol. 1, pp. 531-559. Société Mathématique de France, Paris (1996) · Zbl 0874.53032
[16] Rouyer, Joël; Vîlcu, Costin, The Connected Components of the Space of Alexandrov Surfaces, 249-254, (2014), Cham · Zbl 1338.53095
[17] Zamfirescu, T., Points joined by three shortest paths on convex surfaces, Proc. Am. Math. Soc., 123, 3513-3518, (1995) · Zbl 0851.52003 · doi:10.1090/S0002-9939-1995-1273530-9
[18] Zamfirescu, T., Extreme points of the distance function on convex surfaces, Trans. Am. Math. Soc., 350, 1395-1406, (1998) · Zbl 0896.52006 · doi:10.1090/S0002-9947-98-02106-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.