×

On modules over commutative rings. (English) Zbl 1407.13007

The authors extend some results that have been proved for modules over integral domains to modules over arbitrary commutative rings with identity. In Sections 2 and 3, they discuss torsion-freeness and divisibility. In Sections 4 and 5, they provide application of Matlis-cotorsion modules in two category equivalences. Finally, the authors prove results on rings for which ring of quotients has projective dimension \(1\).

MSC:

13C13 Other special types of modules and ideals in commutative rings
13C11 Injective and flat modules and ideals in commutative rings
Full Text: DOI

References:

[1] L.Angeleri Hügel, D.Herbera and J.Trlifaj, ‘Divisible modules and localization’, J. Algebra294 (2005), 519-551.10.1016/j.jalgebra.2005.03.019 · Zbl 1117.13014 · doi:10.1016/j.jalgebra.2005.03.019
[2] H.Bass, ‘Finitistic dimension and a homological characterization of semiprimary rings’, Trans. Amer. Math. Soc.95 (1960), 466-488.10.1090/S0002-9947-1960-0157984-8 · Zbl 0094.02201 · doi:10.1090/S0002-9947-1960-0157984-8
[3] S.Bazzoni, P. C.Eklof and J.Trlifaj, ‘Tilting cotorsion pairs’, Bull. Lond. Math. Soc.37 (2005), 683-696.10.1112/S0024609305004728 · Zbl 1098.16006 · doi:10.1112/S0024609305004728
[4] S.Bazzoni and D.Herbera, ‘Cotorsion pairs generated by modules of bounded projective dimension’, Israel J. Math.174 (2009), 119-160.10.1007/s11856-009-0106-x · Zbl 1232.16009 · doi:10.1007/s11856-009-0106-x
[5] L.Bican, R.El Bashir and E.Enochs, ‘All modules have flat covers’, Bull. Lond. Math. Soc.33 (2001), 385-390.10.1017/S0024609301008104 · Zbl 1029.16002 · doi:10.1017/S0024609301008104
[6] H.Cartan and S.Eilenberg, Homological Algebra (Princeton University Press, Princeton, NJ, 1956). · Zbl 0075.24305
[7] J.Dauns and L.Fuchs, ‘Torsion-freeness for rings with zero-divisors’, J. Algebra Appl.3 (2004), 221-237.10.1142/S0219498804000885 · Zbl 1107.16003 · doi:10.1142/S0219498804000885
[8] L.Fuchs, ‘Cotorsion and Tor pairs and finitistic dimensions over commutative rings’, in: Groups, Modules, and Model Theory—Surveys and Recent Developments (Springer, Cham, 2017), 317-330.10.1007/978-3-319-51718-6_16 · Zbl 1436.13025 · doi:10.1007/978-3-319-51718-6_16
[9] L.Fuchs and S. B.Lee, ‘The functor Hom and cotorsion theories’, Comm. Algebra37 (2009), 923-932.10.1080/00927870802278602 · Zbl 1166.13013 · doi:10.1080/00927870802278602
[10] L.Fuchs and L.Salce, Modules over Non-Noetherian Domains, Mathematical Surveys and Monographs, 84 (American Mathematical Society, Providence, RI, 2001). · Zbl 0973.13001
[11] R.Göbel and J.Trlifaj, Approximations and Endomorphism Algebras of Modules, Expositions in Mathematics, 41 (Walter de Gruyter, Berlin, 2006).10.1515/9783110199727 · Zbl 1121.16002 · doi:10.1515/9783110199727
[12] R. M.Hamsher, ‘On the structure of a one-dimensional quotient field’, J. Algebra19 (1971), 416-425.10.1016/0021-8693(71)90099-8 · Zbl 0225.13005 · doi:10.1016/0021-8693(71)90099-8
[13] D. K.Harrison, ‘Infinite abelian groups and homological methods’, Ann. of Math. (2)69 (1959), 366-391.10.2307/1970188 · Zbl 0100.02901 · doi:10.2307/1970188
[14] S. B.Lee, ‘On divisible modules over domains’, Arch. Math.53 (1989), 259-262.10.1007/BF01277061 · Zbl 0652.13007 · doi:10.1007/BF01277061
[15] S. B.Lee, ‘Weak-injective modules’, Comm. Algebra34 (2006), 361-370.10.1080/00927870500346339 · Zbl 1094.13012 · doi:10.1080/00927870500346339
[16] S. B.Lee, ‘Modules over AW domains’, Preprint.
[17] E.Matlis, ‘Divisible modules’, Proc. Amer. Math. Soc.11 (1960), 385-391.10.1090/S0002-9939-1960-0116044-8 · Zbl 0095.02403 · doi:10.1090/S0002-9939-1960-0116044-8
[18] E.Matlis, ‘Cotorsion modules’, Mem. Amer. Math. Soc.49 (1964). · Zbl 0135.07801
[19] E.Matlis, 1-Dimensional Cohen-Macaulay Rings, Lecture Notes in Mathematics, 327 (Springer, Berlin, 1973).10.1007/BFb0061666 · Zbl 0264.13012 · doi:10.1007/BFb0061666
[20] B.Stenström, Rings of Quotients, Grundlehren der Mathematischen Wissenschaften, 217 (Springer, New York, 1975).10.1007/978-3-642-66066-5 · Zbl 0296.16001 · doi:10.1007/978-3-642-66066-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.