×

The joint impacts of dispersal delay and dispersal patterns on the stability of predator-prey metacommunities. (English) Zbl 1406.92509

Summary: A predator-prey metapopulation model over arbitrary number of patches is considered in this paper. The model assumes that only prey move (with a dispersal delay) between all connected patches. Two cases of dispersal patterns are considered. For the case the dispersal of prey is due to random effect only (independent of predator density), we show that either the dispersal delay is harmless in the sense that it does not affect the stability of the metacommunity, or the dispersal delay can induce stability switches with finite number of stability intervals. For the case the dispersal of prey is due to predator-avoidance (dependent on predator density), we show that the interplay of density-dependent dispersal and dispersal delay may also induce finite number of stability switches. This indicates that the combination of the density-dependent dispersal and dispersal delay can exhibit both stabilizing and destabilizing effects on the stability of the coexistence equilibrium. Our results show that the delay and the patterns of prey dispersal jointly affect the stability of predator-prey metacommunities and can induce multiple stability switches.

MSC:

92D25 Population dynamics (general)
92D40 Ecology
34C23 Bifurcation theory for ordinary differential equations
Full Text: DOI

References:

[1] Abdllaoui, A. E.; Auger, P.; Kooi, B. W.; De la Parra, R. B.; Mchich, R., Effects of density-dependent migrations on stability of a two-patch predator-prey model, Math. Biosci., 210, 1, 335-354 (2007) · Zbl 1129.92064
[2] Al-Darabsah, I.; Tang, X.; Yuan, Y., A prey-predator mdoel with migratiosn and delays, Discrete Continuous Dyn. Syst.-Ser. B, 21, 3, 737-761 (2016) · Zbl 1334.34177
[3] Beretta, E.; Kuang, Y., Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal., 33, 5, 1144-1165 (2002) · Zbl 1013.92034
[4] Cooke, K. L.; Grossman, Z., Discrete delay, distributed delay and stability switches, J. Math. Anal. Appl., 86, 2, 592-627 (1982) · Zbl 0492.34064
[5] Feng, W.; Rock, B.; Hinson, J., On a new model of two-patch predator prey system with migration of both species, J. Appl. Anal. Comput., 1, 2, 193-203 (2011) · Zbl 1304.92110
[6] Freedman, H.; Takeuchi, Y., Global stability and predator dynamics in a model of prey dispersal in a patchy environment, Nonlinear Anal., 13, 8, 993-1002 (1989) · Zbl 0685.92018
[7] Hale, J. K.; Verduyn Lunel, S. M., Introduction to functional differential equations (1993), Appl. Math. Sci., Springer: Appl. Math. Sci., Springer New York · Zbl 0787.34002
[8] Hauzy, C.; Gauduchon, M.; Hulot, F. D.; Loreau, M., Density-dependent dispersal and relative dispersal affect the stability of predator-prey metacommunities, J. Theor. Biol., 266, 3, 458-469 (2010) · Zbl 1407.92142
[9] Hauzy, C.; Hulot, F. D.; Gins, A.; Loreau, M., Intra-and interspecific density-dependent dispersal in an aquatic prey-predator system, J. Anim. Ecol., 76, 3, 552-558 (2007)
[10] Hsu, S. B.; Huang, T. W., Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 55, 3, 763-783 (1995) · Zbl 0832.34035
[11] Jansen, V. A., The dynamics of two diffusively coupled predator-prey populations, Theor. Popul. Biol., 59, 2, 119-131 (2001) · Zbl 1036.92034
[12] Kang, Y.; Sourav, K. S.; Komi, M., A two-patch prey-predator model with predator dispersal driven by the predation strength, Math. Biosci. Eng., 14, 4, 843-880 (2017) · Zbl 1417.37282
[13] Klepac, P.; Neubert, M. G.; van den Driessche, P., Dispersal delays, predator-prey stability, and the paradox of enrichment, Theor. Popul. Biol., 71, 4, 436-444 (2007) · Zbl 1122.92065
[14] Kot, M., Elements of Mathematical Ecology (2001), Cambridge University Press: Cambridge University Press Cambridge, UK
[15] Kuang, Y., Delay Differential Equations: With Applications in Population Dynamics (1993), Academic Press: Academic Press New York · Zbl 0777.34002
[16] Kuang, Y.; Takeuchi, Y., Predator-prey dynamics in models of prey dispersal in two-patch environments, Math. Biosci., 120, 1, 77-98 (1994) · Zbl 0793.92014
[17] Li, J.; Ma, Z., Stability switches in a class of characteristic equations with delay-dependent parameters, Nonlinear Anal. Real World Appl., 5, 3, 389-408 (2004) · Zbl 1097.34055
[18] Liao, K. L.; Lou, Y., The effect of time delay in a two-patch model with random dispersal, Bull. Math. Biol., 76, 2, 335-376 (2014) · Zbl 1345.92121
[19] Liu, S.; Beretta, E., A stage-structured predator-prey model of beddington-deangelis type, SIAM J. Appl. Math., 66, 4, 1101-1129 (2006) · Zbl 1110.34059
[20] Lotka, A. J., Elements of Physical Biology (1926), Williams and Wilkins: Williams and Wilkins Baltimore · JFM 51.0416.06
[21] Matthysen, E., Density-dependent dispersal in birds and mammals, Ecography, 28, 3, 403-416 (2005)
[22] Mchich, R.; Auger, P.; Poggiale, J. C., Effect of predator density dependent dispersal of prey on stability of a predator-prey system, Math. Biosci., 206, 2, 343-356 (2007) · Zbl 1114.92069
[23] Messan, K.; Kang, Y., A two patch prey-predator model with multiple foraging strategies in predator: applications to insects, Discrete Continuous Dyn. Syst.-B, 22, 3, 947-976 (2017) · Zbl 1361.92059
[24] Monica, C.; Pitchaimani, M., Geometric stability switch criteria in HIV-1 infection delay model, J. Nonlinear Sci., 1-19 (2018)
[25] Murray, J. D., Mathematical Biology (2002), Springer-Verlag: Springer-Verlag New York · Zbl 1006.92001
[26] Neubert, M. G.; Klepac, P.; van den Driessche, P., Stabilizing dispersal delays in predator-prey metapopulation models, Theor. Popul. Biol., 61, 3, 339-347 (2002) · Zbl 1038.92032
[27] Rosenzweig, M. L.; MacArthur, R. H., Graphical representation and stability conditions of predator-prey interactions, Am. Nat., 97, 895, 209-223 (1963)
[28] Sherratt, J. A., Invasion generates periodic traveling waves (wavetrains) in predator-prey models with nonlocal dispersal, SIAM J. Appl. Math., 76, 1, 293-313 (2016) · Zbl 1382.35323
[29] Shu, H.; Hu, X.; Wang, L.; Watmough, J., Delay induced stability switch, multitype bistability and chaos in an intraguild predation model, J. Math. Biol., 71, 6-7, 1269-1298 (2015) · Zbl 1355.92097
[30] Shu, H.; Wang, L.; Wu, J., Global dynamics of nicholsons blowflies equation revisited: onset and termination of nonlinear oscillations, J. Differ. Eq., 255, 9, 2565-2586 (2013) · Zbl 1301.34107
[31] Shu, H.; Wang, L.; Wu, J., Bounded global hopf branches for stage-structured differential equations with unimodal feedback, Nonlinearity, 30, 3, 943-964 (2017) · Zbl 1485.34175
[32] Smith, J. M.; Slatkin, M., The stability of predator-prey systems, Ecology, 54, 2, 384-391 (1973)
[33] Volterra, V., Leçons sur la théorie mathématique de la lutte pour la vie (1931), Gauthier-Villars: Gauthier-Villars Paris · JFM 57.0466.02
[34] Wang, W.; Takeuchi, Y., Adaptation of prey and Predators Between Patches, J. Theor. Biol., 258, 4, 603-613 (2009) · Zbl 1402.92373
[35] Wang, X.; Zou, X., On a two-patch predator-prey model with adaptive habitancy of predators, Discrete Continuous Dyn. Syst.-Ser. B, 21, 2, 677-697 (2016) · Zbl 1336.92074
[36] Xiao, D.; Ruan, S., Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 61, 4, 1445-1472 (2001) · Zbl 0986.34045
[37] Yan, X.; Shi, J., Stability switches in a logistic population model with mixed instantaneous and delayed density dependence, J. Dyn. Differ. Eqs., 29, 1, 113-130 (2017) · Zbl 1369.34095
[38] Zhang, Y.; Lutscher, F.; Guichard, F., The effect of predator avoidance and travel time delay on the stability of predator-prey metacommunities, Theor. Ecol., 8, 3, 273-283 (2015)
[39] Zhu, H.; Campbell, S. A.; Wolkowicz, G. S., Bifurcation analysis of a predator-prey system with nonmonotonic functional response, SIAM J. Appl. Math., 63, 2, 636-682 (2003) · Zbl 1036.34049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.