×

KurSL: model of anharmonic coupled oscillations based on Kuramoto coupling and Sturm-Liouville problem. (English) Zbl 1406.92086

Summary: Physiological signaling is often oscillatory and shows nonlinearity due to complex interactions of underlying processes or signal propagation delays. This is particularly evident in case of brain activity which is subject to various feedback loop interactions between different brain structures, that coordinate their activity to support normal function. In order to understand such signaling in health and disease, methods are needed that can deal with such complex oscillatory phenomena. In this paper, a data-driven method for analyzing anharmonic oscillations is introduced. The KurSL model incorporates two well-studied components, which in the past have been used separately to analyze oscillatory behavior. The Sturm-Liouville equations describe a form of a general oscillation, and the Kuramoto coupling model represents a set of oscillators interacting in the phase domain. Integration of these components provides a flexible framework for capturing complex interactions of oscillatory processes of more general form than the most commonly used harmonic oscillators. The paper introduces a mathematical framework of the KurSL model and analyzes its behavior for a variety of parameter ranges. The significance of the model follows from its ability to provide information about coupled oscillators’ phase dynamics directly from the time series. KurSL offers a novel framework for analyzing a wide range of complex oscillatory behaviors, such as the ones encountered in physiological signals.

MSC:

92C20 Neural biology
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
34B24 Sturm-Liouville theory

Software:

KurSL; PyEMD; Python
Full Text: DOI

References:

[1] Acebrón, J. A.; Bonilla, L. L.; Pérez Vicente, C. J.; Ritort, F.; Spigler, R., The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77, 137-185, (2005)
[2] Andrade, A. O.; Kyberd, P.; Nasuto, S. J., The application of the Hilbert spectrum to the analysis of electromyographic signals, Inf. Sci., 178, 2176-2193, (2008)
[3] Andrade, A. O.; Nasuto, S.; Kyberd, P.; Sweeney-Reed, C. M.; Kanijn, F. R. V., EMG signal filtering based on empirical mode decomposition, Biomed. Signal Process. Control, 1, 44-55, (2006)
[4] Boashash, B., Estimating and interpreting the instantaneous frequency of a signal I: fundamentals, Proc. IEEE, 80, 520-538, (1992)
[5] Breakspear, M.; Heitmann, S.; Daffertshofer, A., Generative models of cortical oscillations: neurobiological implications of the Kuramoto model, Front. Hum. Neurosci., 4, 190, (2010)
[6] Brown, E.; Holmes, P.; Moehlis, J.; Kaplan, E.; Marsden, J. E.; Sreenivasan, K. R., Perspectives and Problems in Nonlinear Science: A Celebratory Volume in Honor of Larry Sirovich, Globally coupled oscillator networks, 183-215, (2003), Springer, New York · Zbl 1132.92316
[7] Busch, N. A.; Dubois, J.; VanRullen, R., The phase of ongoing EEG oscillations predicts visual perception, J. Neurosci., 29, 7869-7876, (2009)
[8] Carvalhaes, C.; de Barros, J. A., The surface Laplacian technique in EEG: theory and methods, Int. J. Psychophysiol., 97, 174-188, (2015)
[9] Chu, P. C.; Fan, C.; Huang, N. E., Derivative-optimized empirical mode decomposition for the Hilbert-huang transform, J. Comput. Appl. Math., 259, 57-64, (2013) · Zbl 1291.65392
[10] Cohen, L., Time-Frequency Analysis, (1995), Prentice Hall PTR, Englewood Cliffs
[11] Cohen, M. X.; Gulbinaite, R., Five methodological challenges in cognitive electrophysiology, NeuroImage., 85, 702-710, (2013)
[12] Daza, C. Y. C.; Tauro, C. B.; Tamarit, F. A.; Gleiser, P. M., Modeling spatial patterns in the visual cortex, Phys. Rev. E, 90, 042818, (2014)
[13] de Lima, E. R.; Andrade, A. O.; Pons, J. L.; Kyberd, P.; Nasuto, S. J., Empirical mode decomposition: A novel technique for the study of tremor time series, Med. Biol. Eng. Comput., 44, 569-582, (2006)
[14] Duggento, A.; Stankovski, T.; McClintock, P. V. E.; Stefanovska, A., Dynamical Bayesian inference of time-evolving interactions: from a pair of coupled oscillators to networks of oscillators, Phys. Rev. E, Stat. Nonlinear Soft Matter Phys., 86, 061126-1-061126-16, (2012)
[15] Freiling, G.; Yurko, V. A., Inverse Sturm-Liouville Problems and Their Applications., (2001), Nova Science Publishers, New York · Zbl 1037.34005
[16] Galán, R. F.; Ermentrout, G. B.; Urban, N. N., Efficient estimation of phase-resetting curves in real neurons and its significance for neural-network modeling, Phys. Rev. Lett., 94, 158101, (2005)
[17] Galka, A., Topics in Nonlinear Time Series Analysis: With Implications for EEG Analysis., (2000), World Scientific, Singapore · Zbl 0958.92021
[18] Gou, K.; Chen, Z., Inverse Sturm-Liouville problems and their biomedical engineering applications, JSM Math. Stat., 2, 1008-1-1008-9, (2015)
[19] Halliday, D.; Resnick, R.; Walker, J., Fundamentals of Physics, (2000), Wiley, New York
[20] Herzog, E. D., Neurons and networks in daily rhythms, Nat. Rev. Neurosci., 8, 790-802, (2007)
[21] Huang, N. E.; Shen, Z.; Long, S. R.; Wu, M. C.; Shih, H. H.; Zheng, Q.; Yen, N.-C.; Tung, C. C.; Liu, H. H., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. A, Math. Phys. Eng. Sci., 454, 903-995, (1998) · Zbl 0945.62093
[22] Kuramoto, Y.; Araki, H., Self-entrainment of a population of coupled non-linear oscillators, Proc. Int. Symp. Mathematical Problems in Theoretical Physics, 39, 420-422, (1975), Springer, Berlin · Zbl 0335.34021
[23] Landau, L. D.; Lifshitz, E. M., Quantum Mechanics: Non-Relativistic Theory., (1965), Pergamon Press, Oxford · Zbl 0178.57901
[24] Laszuk, D. (2014). Python implemention of empirical mode decomposition algorithm. Available at: http://www.laszukdawid.com/codes. Accessed on 11 March 2018.
[25] Laszuk, D.; Cadenas, O.; Nasuto, S. J., On the phase coupling of two components mixing in empirical mode decomposition, Adv. Adapt. Data Anal., 8, 1650004-1-1650004-11, (2016)
[26] Lux, T.; Marchesi, M., Scaling and criticality in a stochastic multi-agent model of a financial market, Nature, 397, 498-500, (1999)
[27] Michaels, D. C.; Matyas, E. P.; Jalife, J., Mechanisms of sinoatrial pacemaker synchronization: A new hypothesis, Circ. Res., 61, 704-714, (1987)
[28] Molla, M. K. I.; Tanaka, T.; Rutkowski, T. M.; Cichocki, A., Separation of EOG artifacts from EEG signals using bivariate EMD, Proc. 2010 IEEE Int. Conf. Acoustics, Speech and Signal Processing., 562-565, (2010), IEEE, Washington, DC
[29] Moran, R.; Kiebel, S.; Stephan, K.; Reilly, R.; Daunizeau, J.; Friston, K., A neural mass model of spectral responses in electrophysiology, NeuroImage., 37, 706-720, (2007)
[30] Osterhage, H.; Mormann, F.; Wagner, T.; Lehnertz, K., Detecting directional coupling in the human epileptic brain: limitations and potential pitfalls, Phys. Rev. E, 77, 011914, (2008)
[31] Pontrelli, G.; de Monte, F., Modeling of mass dynamics in arterial drug-eluting stents, J. Porous Media, 12, 19-28, (2009)
[32] Rodrigues, F. A.; Peron, T. K. D.; Ji, P.; Kurths, J., The Kuramoto model in complex networks, Phys. Rep., 610, 1-98, (2016) · Zbl 1357.34089
[33] Rosenblum, M. G.; Cimponeriu, L.; Bezerianos, A.; Patzak, A.; Mrowka, R., Identification of coupling direction: application to cardiorespiratory interaction, Phys. Rev. E, 65, 041909, (2002)
[34] Rutkowski, T. M.; Mandic, D. P.; Cichocki, A.; Przybyszewski, A. W., EMD approach to multichannel EEG data the amplitude and phase components clustering analysis, J. Circuits Syst. Comput., 19, 215-229, (2010)
[35] Sadilek, M.; Thurner, S., Physiologically motivated multiplex Kuramoto model describes phase diagram of cortical activity, Sci. Rep., 5, 10015, (2015)
[36] Schnitzler, A.; Gross, J., Normal and pathological oscillatory communication in the brain, Nat. Rev. Neurosci., 6, 285-296, (2005)
[37] Schrödinger, E., An undulatory theory of the mechanics of atoms and molecules, Phys. Rev., 28, 1049-1070, (1926) · JFM 52.0965.07
[38] Sharpley, R. C.; Vatchev, V., Analysis of the intrinsic mode functions, Constr. Approx., 24, 17-47, (2006) · Zbl 1100.94006
[39] Singer, A., Spectral independent component analysis, Appl. Comput. Harmon. Anal., 21, 135-144, (2006) · Zbl 1095.94010
[40] Stankovski, T.; Ticcinelli, V.; McClintock, P. V. E.; Stefanovska, A., Coupling functions in networks of oscillators, New J. Phys., 17, 035002, (2015) · Zbl 1452.34045
[41] Strogatz, S. H., Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering., (1994), Westview Press, Boulder
[42] Strogatz, S. H., From Kuramoto to crawford: exploring the onset of synchronization in populations of coupled oscillators, Physica D, 143, 1-20, (2000) · Zbl 0983.34022
[43] Sturm, J. C. F., Mémoire sur LES équations différentielles linéaires du second ordre, J. Math. Pures Appl., 1, 106-186, (1836)
[44] Sweeney, K. T.; McLoone, S. F.; Ward, T. E., The use of ensemble empirical mode decomposition with canonical correlation analysis as a novel artifact removal technique, IEEE Trans. Biomed. Eng., 60, 97-105, (2013)
[45] Sweeney-Reed, C. M.; Nasuto, S. J., A novel approach to the detection of synchronisation in EEG based on empirical mode decomposition, J. Comput. Neurosci., 23, 79-111, (2007)
[46] Sweeney-Reed, C. M.; Nasuto, S. J., Detection of neural correlates of self-paced motor activity using empirical mode decomposition phase locking analysis, J. Neurosci. Meth., 184, 54-70, (2009)
[47] Teschl, G., Ordinary Differential Equations and Dynamical Systems., (2012), American Mathematical Society, Providence · Zbl 1263.34002
[48] Wagner, T.; Axmacher, N.; Lehnertz, K.; Elger, C. E.; Fell, J., Sleep-dependent directional coupling between human neocortex and hippocampus, Cortex, 46, 256-263, (2010)
[49] Winfree, A. T., Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16, 15-42, (1967)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.