×

A new method for interpolating in a convex subset of a Hilbert space. (English) Zbl 1406.90127

Summary: In this paper, interpolating curve or surface with linear inequality constraints is considered as a general convex optimization problem in a reproducing kernel Hilbert space. The aim of the present paper is to propose an approximation method in a very general framework based on a discretized optimization problem in a finite-dimensional Hilbert space under the same set of constraints. We prove that the approximate solution converges uniformly to the optimal constrained interpolating function. Numerical examples are provided to illustrate this result in the case of boundedness and monotonicity constraints in one and two dimensions.

MSC:

90C48 Programming in abstract spaces
90C25 Convex programming
90C59 Approximation methods and heuristics in mathematical programming

Software:

pchip

References:

[1] Akima, H.: A new method of interpolation and smooth curve fitting based on local procedures. J. ACM 17(4), 589-602 (1970) · Zbl 0209.46805 · doi:10.1145/321607.321609
[2] Andersson, L., Elfving, T.: Interpolation and approximation by monotone cubic splines. J. Approx. Theory 66(3), 302-333 (1991) · Zbl 0739.41005 · doi:10.1016/0021-9045(91)90033-7
[3] Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337-404 (1950) · Zbl 0037.20701 · doi:10.1090/S0002-9947-1950-0051437-7
[4] Bay, X., Grammont, L., Maatouk, H.: Generalization of the Kimeldorf-Wahba Correspondence for Constrained Interpolation. Electron. J. Stat. 10(1), 1580-1595 (2016) · Zbl 1348.60055 · doi:10.1214/16-EJS1149
[5] Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2004) · Zbl 1058.90049 · doi:10.1017/CBO9780511804441
[6] Dontchev, A.L., Qi, H., Qi, L.: Convergence of Newton’s method for convex best interpolation. Numer. Math. 87(3), 435-456 (2001) · Zbl 0970.65009 · doi:10.1007/PL00005419
[7] Dougherty, R.L., Edelman, A., Hyman, J.M.: Nonnegativity-, monotonicity-, or convexity-preserving cubic and quintic Hermite interpolation. Math. Comput. 52(186), 471-494 (1989) · Zbl 0693.41004 · doi:10.1090/S0025-5718-1989-0962209-1
[8] Fritsch, F., Carlson, R.: Monotone piecewise cubic interpolation. SIAM J. Numer. Anal. 17(2), 238-246 (1980) · Zbl 0423.65011 · doi:10.1137/0717021
[9] Goldfarb, D., Idnani, A.: A numerically stable dual method for solving strictly convex quadratic programs. Math. Program. 27(1), 1-33 (1983) · Zbl 0537.90081 · doi:10.1007/BF02591962
[10] Hyman, J.M.: Accurate monotonicity preserving cubic interpolation. SIAM J. Sci. Comput. 4(4), 645-654 (1983) · Zbl 0533.65004 · doi:10.1137/0904045
[11] Kimeldorf, G.S., Wahba, G.: A correspondence between bayesian estimation on stochastic processes and smoothing by splines. Ann. Math. Stat. 41(2), 495-502 (1970) · Zbl 0193.45201 · doi:10.1214/aoms/1177697089
[12] Laurent, P.J.: An algorithm for the computation of spline functions with inequality constraints. Séminaire d’analyse numérique de Grenoble, No. 335. Grenoble (1980) · Zbl 1348.60055
[13] Mhaskar, H., Pai, D.: Fundamentals of Approximation Theory. CRC Press, Boca Raton (2000) · Zbl 0964.41001
[14] Micchelli, C., Utreras, F.: Smoothing and interpolation in a convex subset of a hilbert space. SIAM J. Sci. Stat. Comput. 9(4), 728-746 (1988) · Zbl 0651.65046 · doi:10.1137/0909048
[15] Nair, M.: Linear Operator Equations: Approximation and Regularization. World Scientific, Singapore (2009) · Zbl 1208.47002 · doi:10.1142/7055
[16] Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). The MIT Press, Cambridge (2005)
[17] Utreras, F., Varas, M.L.: Monotone interpolation of scattered data in \[{\mathbb{R}}^s\] Rs. Constr. Approx. 7, 49-68 (1991) · Zbl 0722.41011 · doi:10.1007/BF01888146
[18] Utreras, F.I.: Convergence rates for monotone cubic spline interpolation. J. Approx. Theory 36(1), 86-90 (1982) · Zbl 0561.41012 · doi:10.1016/0021-9045(82)90074-0
[19] Wahba, G.: Spline Models for Observational Data, vol. 59. SIAM, Philadelphia (1990) · Zbl 0813.62001 · doi:10.1137/1.9781611970128
[20] Wolberg, G., Alfy, I.: Monotonic cubic spline interpolation. In: Proceedings of Computer Graphics International, pp. 188-195 (1999) · Zbl 1001.65012
[21] Yin, H., Wang, Y., Qi, L.: Shape-preserving interpolation and smoothing for options market implied volatility. J. Optim. Theory Appl. 142(1), 243-266 (2009) · Zbl 1180.91297 · doi:10.1007/s10957-009-9541-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.