×

Conic scalarization approach to solve multi-choice multi-objective transportation problem with interval goal. (English) Zbl 1406.90077

Summary: This paper explores the study of multi-choice multi-objective transportation problem (MCMTP) under the light of conic scalarizing function. MCMTP is a multi-objective transportation problem (MOTP) where the parameters such as cost, demand and supply are treated as multi-choice parameters. A general transformation procedure using binary variables is illustrated to reduce MCMTP into MOTP. Most of the MOTPs are solved by goal programming (GP) approach, but the solution of MOTP may not be satisfied all times by the decision maker when the objective functions of the proposed problem contains interval-valued aspiration levels. To overcome this difficulty, here we propose the approaches of revised multi-choice goal programming (RMCGP) and conic scalarizing function into the MOTP, and then we compare among the solutions. Two numerical examples are presented to show the feasibility and usefulness of our paper. The paper ends with a conclusion and an outlook on future studies.

MSC:

90C08 Special problems of linear programming (transportation, multi-index, data envelopment analysis, etc.)
90C29 Multi-objective and goal programming
Full Text: DOI

References:

[1] Benson, H. P. (1979). An improved definition of proper efficiency for vector maximization with respect to cones. Journal of Mathematical Analysis and Applications, 71, 232-241. · Zbl 0418.90081 · doi:10.1016/0022-247X(79)90226-9
[2] Charnes, A., & Cooper, W. W. (1957). Management models and industrial applications of linear programming. Management Science, 4(1), 38-91. · Zbl 0995.90552 · doi:10.1287/mnsc.4.1.38
[3] Charnes, A., Cooper, W. W., & Ferguson, R. (1955). Optimal estimation of executive compensation by linear programming. Management Science, 1, 138-151. · Zbl 0995.90590 · doi:10.1287/mnsc.1.2.138
[4] Chang, C. T. (2007). Multi-choice goal programming. Omega, 35, 389-396. · doi:10.1016/j.omega.2005.07.009
[5] Chang, C. T. (2008). Revised multi-choice goal programming. Applied Mathematical Modelling, 32, 2587-2595. · Zbl 1167.90637 · doi:10.1016/j.apm.2007.09.008
[6] Ehrgott, M., Waters, C., Kasimbeyli, R., & Ustun, O. (2009). Multi-objective programming and multi-attribute utility functions in portfolio optimization. INFOR Information Systems and Operational Research, 47, 31-42. · Zbl 07683533 · doi:10.3138/infor.47.1.31
[7] Gasimov, R. N. (2001). Characterization of the Benson proper efficiency and scalarization in nonconvex vector optimization, Multiple Criteria Decision Making in the New Millennium. Book Series: Lecture Notes in Economics and Mathematical Systems, 507, 189-198. · Zbl 1014.90087
[8] Gasimov, R. N. (2002). Augmented Lagrangian duality and non-differentiable optimization methods in non-convex programming. Journal of Global Optimization, 24, 187-203. · Zbl 1047.90048 · doi:10.1023/A:1020261001771
[9] Gasimov, R. N., & Ozturk, G. (2006). Separation via polyhedral conic functions. Optimization Methods and Software, 21(4), 527-540. · Zbl 1113.90095 · doi:10.1080/10556780600723252
[10] Hannan, E. L. (1985). An assessment of some of the criticisms of goal programming. Journal Computers and Operations Research, 12(6), 525-541. · Zbl 0606.90068 · doi:10.1016/0305-0548(85)90052-8
[11] Ignizio, J. P. (1976). Goal programming and extensions. Lexington, MA: Lexington Books.
[12] Ignizio, J. P. (1978). A review of goal programming: A tool for multi-objective analysis. The Journal of the Operational Research Society, 29(11), 1109-1119. · Zbl 0396.90093 · doi:10.1057/jors.1978.243
[13] Ignizio, JP; Romero, C.; Bidgoli, H. (ed.), Goal programming, No. 2, 489-500 (2003), San Diego, CA · doi:10.1016/B0-12-227240-4/00082-4
[14] Lee, S.M., & Olson, D. (2000). Goal programming, In: Gal T., Stewart T. J., Hanne T. (Eds.), Multi-criteria decision making: Advances in MCDM models, algorithms, theory, and applications. Boston: Kluwer, Chapter 8, pp. 569-581.
[15] Lee, A. H. I., Kang, H.-Y., Yang, C.-Y., & Lin, C.-Y. (2010). An evaluation framework for product planning using FANP, QFD and multi-choice goal programming. International Journal of Production and Research, 48(13), 3977-3997. · Zbl 1197.90325 · doi:10.1080/00207540902950845
[16] Li, L., & Lai, K. K. (2000). A fuzzy approach to the multi-objective transportation problem. Computers and Operations Research, 27, 43-57. · Zbl 0973.90010 · doi:10.1016/S0305-0548(99)00007-6
[17] Liao, C. N., & Kao, H. P. (2010). Supplier selection model using Taguchi loss function, analytical hierarchy process and multi-choice goal programming. Computers and Industrial Engineering, 58, 571-577. · doi:10.1016/j.cie.2009.12.004
[18] Mahapatra, D. R., Roy, S. K., & Biswal, M. P. (2013). Multi-choice stochastic transportation problem involving extreme value distribution. Applied Mathematical Modelling, 37(4), 2230-2240. · Zbl 1349.90626 · doi:10.1016/j.apm.2012.04.024
[19] Maity, G., & Roy, S. K. (2014). Solving multi-choice multi-objective transportation problem: A utility function approach. Journal of Uncertainty Analysis and Applications, 2, 11. doi:10.1186/2195-5468-2-11. · doi:10.1186/2195-5468-2-11
[20] Maity, G., & Roy, S. K. (2016). Solving a multi-objective transportation problem with nonlinear cost and multi-choice demand. International Journal of Management Science and Engineering Management, 11(1), 62-70. · doi:10.1080/17509653.2014.988768
[21] Midya, S., & Roy, S. K. (2014). Single-sink, fixed-charge, multi-objective, multi-index stochastic transportation problem. American Journal of Mathematical and Management Sciences, 33, 300-314. · doi:10.1080/01966324.2014.942474
[22] Miettinen, K. (1999). Nonlinear multi-objective Optimization. Boston: Kluwer. · Zbl 0949.90082
[23] Paksoy, T., & Chang, C. T. (2010). Revised multi-choice goal programming for multi-period, multi-stage inventory controlled supply chain model with popup stores in Guerilla marketing. Applied Mathematical Modelling, 34, 3586-3598. · Zbl 1201.90015 · doi:10.1016/j.apm.2010.03.008
[24] Rahmati, S. H. A., Hajipour, V., & Niaki, S. T. A. (2013). A soft-computing Pareto-based meta-heuristic algorithm for a multi-objective multi-server facility location problem. Applied Soft Computing, 13, 1728-1740. · doi:10.1016/j.asoc.2012.12.016
[25] Romero, C. (2004). A general structure of achievement function for a goal programming model. European Journal of Operational Research, 153, 675-686. · Zbl 1099.90576 · doi:10.1016/S0377-2217(02)00793-2
[26] Roy, S. K. (2014). Multi-choice stochastic transportation problem involving weibull distribution. International Journal of Operational Research, 21(1), 38-58. · Zbl 1308.90102 · doi:10.1504/IJOR.2014.064021
[27] Roy, S. K. (2015). Lagrange’s interpolating polynomial approach to solve multi-choice transportation problem. International Journal of Applied and Computational Mathematics, 1(4), 639-649. · Zbl 1421.90026 · doi:10.1007/s40819-015-0041-y
[28] Roy, S. K., & Mahapatra, D. R. (2011). Multi-objective interval-valued transportation probabilistic problem involving log-normal. International Journal of Computing Science and Mathematics, 1(2), 14-21.
[29] Roy, S. K., Mahaparta, D. R., & Biswal, M. P. (2012). Multi-choice stochastic transportation problem with exponential distribution. Journal of Uncertain Systems, 6(3), 200-213.
[30] Tamiz, M., Jones, D. F., & El-Darzi, E. (1995). A review of goal programming and its applications. Annals of Operations Research, 58, 39-53. · Zbl 0836.90106 · doi:10.1007/BF02032309
[31] Tamiz M., Jones D.F., & Mirrazavi S.K. (1997). Intelligent solution and analysis of goal programmes: The GPSYS System, Technical Report, School of computer science and mathematics, University of Portsmouth, UK. · Zbl 1201.90015
[32] Tamiz, M., Jones, D. F., & Romero, C. (1998). Goal programming for decision making: An overview of the current state-of-the-art. European Journal of Operational Research, 111(3), 569-581. · Zbl 0937.90048 · doi:10.1016/S0377-2217(97)00317-2
[33] Ustun, O. (2012). Multi-choice goal programming formulation based on conic scalarization approach. Applied Mathematical Modelling, 34, 974-988. · Zbl 1243.90207 · doi:10.1016/j.apm.2011.07.065
[34] Zeleny, M. (1982). The pros and cons of goal programming. Computers and Operations Research, 8, 357-359. · doi:10.1016/0305-0548(81)90022-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.