×

A plasma-vacuum interface tracking algorithm for magnetohydrodynamic simulations of coaxial plasma accelerators. (English) Zbl 1406.76062

Summary: The resistive magneto-hydrodynamic (MHD) model describes the behavior of a strongly ionized plasma in the presence of external electric and magnetic fields. For problems involving the plasma with an open boundary to very low pressure/vacuum regions, the continuum assumption is no longer valid in the entire domain of interest. For example, this is seen in a plasma accelerator where a dense plasma expands into a vacuum background. A common practice to deal with this issue is to assign small values of density and pressure to the vacuum regions and proceed to solve the continuum based MHD equations throughout the domain. We show that this approach fails to produce solutions consistent with the physics of the problem and can give rise to unacceptable artifacts such as spurious shocks. We develop a plasma-vacuum interface tracking approach to mitigate this problem. The plasma-vacuum interface is tracked in a physically consistent manner and the MHD equations are solved only in the regions that contain the plasma. The interface tracking is achieved using a face-flux formulation derived from the theoretical solution to a 1D free expansion problem. Coupled with a threshold based approach, the interface tracking is implemented for both explicit and implicit time stepping frameworks on generalized unstructured grids. Simulations of magnetized thermal plasma jets expanding into a vacuum background indicate plume profiles devoid of the unphysical shock obtained using the small background density approach. In the context of resistive MHD simulations, the interface tracking approach overcomes the numerical stiffness induced by specifying a large background resistivity in the vacuum regions, resulting in significant wall-clock time gains.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76W05 Magnetohydrodynamics and electrohydrodynamics

Software:

MACH2; HLLE; HE-E1GODF; PETSc
Full Text: DOI

References:

[1] Watanabe, K.; Sato, T., Global simulation of the solar wind-magnetosphere interaction: the importance of its numerical validity, J. Geophys. Res. Space Phys., 95, A1, 75-88 (1990)
[2] J.S. Shang, P.W. Canupp, D.V. Gaitonde, Computational magneto-aerodynamic hypersonics, AIAA 99-4903 (1999).; J.S. Shang, P.W. Canupp, D.V. Gaitonde, Computational magneto-aerodynamic hypersonics, AIAA 99-4903 (1999).
[3] Sankaran, K.; Martinelli, L.; Jardin, S. C.; Choueiri, E. Y., A flux-limited numerical method for solving the MHD equations to simulate propulsive plasma flows, Int. J. Numer. Methods Eng., 53, 6, 1415-1432 (2002) · Zbl 0996.76069
[4] Sitaraman, H.; Raja, L. L., Magneto-hydrodynamics simulation study of deflagration mode in co-axial plasma accelerators, Phys. Plasmas, 21, Article 012104 pp. (2014)
[5] Sankaran, K.; Choueiri, E. Y.; Jardin, S. C., Comparison of simulated magnetoplasmadynamic thruster flowfields to experimental measurements, J. Propuls. Power, 21, 1, 129-138 (2005)
[6] Luo, H.; Baum, J. D.; Löhner, R., A fast, matrix-free implicit method for compressible flows on unstructured grids, J. Comput. Phys., 146, 2, 664-690 (1998) · Zbl 0931.76045
[7] Mikellides, P. G.; Turchi, P. J.; Roderick, N. F., Applied-field magnetoplasmadynamic thrusters, Part 1: Numerical simulations using the MACH2 code, J. Propuls. Power, 16, 5, 887-893 (2000)
[8] Cassibry, J. T.; Thio, F.; Markusic, T. E.; Wu, S. T., Numerical modeling of a pulsed electromagnetic plasma thruster experiment, J. Propuls. Power, 22, 3, 628-636 (2006)
[9] M.H. Frese, MACH2: a two-dimensional magnetohydrodynamic simulation code for complex experimental configurations (No. AMRC-R-874) Mission Research Corp Albuquerque NM, 1987.; M.H. Frese, MACH2: a two-dimensional magnetohydrodynamic simulation code for complex experimental configurations (No. AMRC-R-874) Mission Research Corp Albuquerque NM, 1987.
[10] Xisto, C. M.; Páscoa, J. C.; Oliveira, P. J., Numerical modelling of electrode geometry effects on a 2D self-field MPD thruster, (ASME 2013 International Mechanical Engineering Congress and Exposition (2013)), V001T01A051, pp. 12
[11] Issa, R. I.; Gosman, A. D.; Watkins, A. P., The computation of compressible and incompressible recirculating flows by a non-iterative implicit scheme, J. Comput. Phys., 62, 1, 66-82 (1986) · Zbl 0575.76008
[12] Poehlmann, F. R.; Cappelli, M. A.; Rieker, G. B., Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode, Phys. Plasmas, 17, 12, Article 123508 pp. (2010)
[13] Einfeldt, B.; Munz, C. D.; Roe, P. L.; Sjögreen, B., On Godunov-type methods near low densities, J. Comput. Phys., 92, 2, 273-295 (1991) · Zbl 0709.76102
[14] Sun, Q.; Boyd, I. D.; Candler, G. V., A hybrid continuum/particle approach for modeling subsonic, rarefied gas flows, J. Comput. Phys., 194, 1, 256-277 (2004) · Zbl 1136.76420
[15] Munz, C.-D., A tracking method for gas flow into vacuum based on the vacuum Riemann problem, Math. Methods Appl. Sci., 17, 597-612 (1994) · Zbl 0803.76074
[16] Goldston, J. R.; Rutherford, P. H., Introduction to Plasma Physics (1995), CRC Press
[17] Inan, U. S.; Gołkowski, M., Principles of Plasma Physics for Engineers and Scientists (2010), Cambridge University Press
[18] Sitaraman, H., Magneto-Hydrodynamics Simulation Study of High Density Thermal Plasmas in Plasma Acceleration Devices (2013), University of Texas at Austin, PhD thesis
[19] Bittencourt, J. A., Fundamentals of Plasma Physics (2013), Springer Science & Business Media · Zbl 1084.76001
[20] Spitzer, L.; Harm, R., Transport phenomena in a completely ionized gas, Phys. Rev., 89, 5, 977-981 (1953) · Zbl 0050.23505
[21] Boulos, M. I.; Fauchais, P.; Pfender, E., Thermal Plasmas: Fundamentals and Applications (2013), Springer Science & Business Media
[22] Dedner, A.; Kemm, F.; Kröner, D.; Munz, C. D.; Schnitzer, T.; Wesenberg, M., Hyperbolic divergence cleaning for the MHD equations, J. Comput. Phys., 175, 2, 645-673 (2002) · Zbl 1059.76040
[23] Harten, A.; Lax, P. D.; van Leer, B., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., 25, 1, 35-61 (1983) · Zbl 0565.65051
[24] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (2009), Springer Science & Business Media · Zbl 1227.76006
[25] Davis, S. F., Simplified second-order Godunov-type methods, SIAM J. Sci. Stat. Comput., 9, 3, 445-473 (1988) · Zbl 0645.65050
[26] Haselbacher, A.; Blazek, J., Accurate and efficient discretization of Navier-Stokes equations on mixed grid, AIAA J., 38, 11, 2094-2102 (2000)
[27] Balay, S.; Brown, J.; Buschelman, K.; Eijkhout, V.; Gropp, W.; Kaushik, D.; Knepley, M.; McInnes, L. C.; Smith, B.; Zhang, H., PETSc Users Manual (2012), Computer Science Division, Argonne National Laboratory: Computer Science Division, Argonne National Laboratory Argonne, IL, revision 3.3
[28] Loebner, K. T.; Underwood, T. C.; Mouratidis, T.; Cappelli, M. A., Radial magnetic compression in the expelled jet of a plasma deflagration accelerator, Appl. Phys. Lett., 108, 9, Article 094104 pp. (2016)
[29] Anderson, J. D., Modern Compressible Flow: With Historical Perspective, vol. 12 (1990), McGraw-Hill: McGraw-Hill New York
[30] Poehlmann, F. R., Investigation of a Plasma Deflagration Gun and Magnetohydrodynamic Rankine-Hugoniot Model to Support a Unifying Theory for Electromagnetic Plasma Guns (2010), Dept. of Mechanical Engineering, Stanford University, PhD thesis
[31] Cheng, D. Y., Plasma deflagration and properties of a coaxial plasma deflagration gun, Nucl. Fusion, 10 (1970)
[32] Shumlak, U.; Golingo, R. P.; Nelson, B. A.; Hartog, D. J., Evidence of stabilization in the Z-pinch, Phys. Rev. Lett., 87, 20, Article 205005 pp. (2001)
[33] Saad, Y., Iterative Methods for Sparse Linear Systems (2003), Society for Industrial and Applied Mathematics · Zbl 1002.65042
[34] Barrett, R.; Berry, M.; Chan, T. F.; Demmel, J.; Donato, J.; Dongarra, J.; Eijkhout, V.; Pozo, R.; Romine, C.; Van der Vorst, H., Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (1994), Society for Industrial and Applied Mathematics
[35] Shadid, J. N.; Pawlowski, R. P.; Banks, J. W.; Chacón, L.; Lin, P. T.; Tuminaro, R. S., Towards a scalable fully-implicit fully-coupled resistive MHD formulation with stabilized FE methods, J. Comput. Phys., 229, 20, 7649-7671 (2010) · Zbl 1425.76312
[36] Spitzer, L.; Härm, R., Transport phenomena in a completely ionized gas, Phys. Rev., 89, 5, 977 (1953) · Zbl 0050.23505
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.