×

Multiscale analysis of the electromechanical coupling in dielectric elastomers. (English) Zbl 1406.74212

Summary: The coupled electromechanical response of dielectrics is analyzed in terms of the local response and the distribution of its microstructural unit elements. A comparison between two variational statements for a continuous and a discrete systems results in an estimate for the macroscopic coupled electromechanical energy-density function. Next, a few types of unit elements are considered and the corresponding behaviors of dielectrics with a random distribution of these elements are calculated. Additionally, to highlight the possible effect of local constraints among the unit elements, a deterministic model for a network of polymer chains is proposed and its response to electric excitation is determined. The practically common case of a uniaxial stretch aligned with the electric field is examined in detail and the results are compared with widely accepted macroscopic models and available experimental results.

MSC:

74F15 Electromagnetic effects in solid mechanics
74B20 Nonlinear elasticity
78A48 Composite media; random media in optics and electromagnetic theory
Full Text: DOI

References:

[1] Arruda, E. M.; Boyce, M. C., A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials, J. Mech. Phys. Solids, 41, 389-412, (1993) · Zbl 1355.74020
[2] Ask, A.; Menzel, A.; Ristinmaa, M., Electrostriction in electro-viscoelastic polymers, Mech. Mater., 50, 9-21, (2012)
[3] Bar-Cohen, Y., EAP history, current status, and infrastructure, (Bar-Cohen, Y., Electroactive Polymer (EAP) Actuators as Artificial Muscles, (2001), SPIE Press Bellingham, WA), 3-44, (Chapter 1)
[4] Blythe, T.; Bloor, D., Electrical properties of polymers, (2008), Cambridge University Press Cambridge, UK
[5] Bustamante, R.; Dorfmann, A.; Ogden, R. W., Nonlinear electroelastostatics: a variational framework, Z. Angew. Math. Phys., 60, 154-177, (2009) · Zbl 1161.74022
[6] Coleman, B. D.; Noll, W., The thermodynamics of elastic material with heat conduction and viscosity, Arch. Ration. Mech. Anal., 13, 167-178, (1963) · Zbl 0113.17802
[7] Cohen, N.; deBotton, G., The electromechanical response of polymer networks with long-chain molecules, Math. Mech. Solids, (2014) · Zbl 1327.74060
[8] deBotton, G.; Tevet-Deree, L.; Socolsky, E. A., Electroactive heterogeneous polymers: analysis and applications to laminated composites, Mech. Adv. Mater. Struct., 14, 13-22, (2007)
[9] Dorfmann, A.; Ogden, R. W., Nonlinear electroelasticity, Acta. Mech., 174, 167-183, (2005) · Zbl 1066.74024
[10] Dorfmann, A.; Ogden, R. W., Nonlinear electroelastostatics: incremental equations and stability, Int. J. Eng. Sci., 48, 1-14, (2010) · Zbl 1213.74052
[11] Flory, P. J.; Rehner, J., Statistical mechanics of cross-linked polymer networks I. rubberlike elasticity, J. Chem. Phys., 11, 11, 512-520, (1943)
[12] Fröhlich, H., Theory of dielectrics; dielectric constant and dielectric loss, (1986), Clarendon Press Oxford, UK · Zbl 0079.23603
[13] Galipeau, E.; Ponte Castañeda, P., A finite-strain constitutive model for magnetorheological elastomers: magnetic torques and fiber rotations, J. Mech. Phys. Solids, 61, 1065-1090, (2013)
[14] Gei, M.; Roccabianca, S.; Bacca, M., Controlling band gap in electroactive polymer-based structures, IEEE-ASME Trans. Mechatron., 16, 102-107, (2011)
[15] Gei, M.; Springhetti, R.; Bortot, E., Performance of soft dielectric laminated composites, Smart Mater. Struct., 22, 104014, (2013)
[16] Huang, C.; Zhang, Q. M.; deBotton, G.; Bhattacharya, K., All-organic dielectric-percolative three-component composite materials with high electromechanical response, Appl. Phys. Lett., 84, 4391-4393, (2004)
[17] Kofod, G.; Sommer-Larsen, P.; Kornbluh, R.; Pelrine, R., Actuation response of polyacrylate dielectric elastomers, J. Intell. Mater. Syst. Struct., 14, 787-793, (2003)
[18] Liu, L. P., On energy formulations of electrostatics for continuum media, J. Mech. Phys. Solids, 61, 968-990, (2013) · Zbl 1260.74016
[19] Lorrain, P.; Corson, D. R., Electromagnetic fields and waves, (1988), W. H. Freemand and Company · Zbl 0111.41302
[20] McKay, T. G.; Calius, E. P.; Anderson, I. A., The dielectric constant of 3m vhb: a parameter in dispute, (Bar Cohen, Y.; Wallmersperger, T., Electroactive Polymer Actuators and Devices (EAPAD), vol. 7287, (2009)), Bellingham, WA
[21] McKay, T.; O’Brien, B.; Calius, E.; Anderson, I., An integrated, self-priming dielectric elastomer generator, Appl. Phys. Lett., 97, 062911, (2010)
[22] McMeeking, R. M.; Landis, C. M., Electrostatic forces and stored energy for deformable dielectric materials, J. Appl. Mech. Trans. ASME, 72, 581-590, (2005) · Zbl 1111.74551
[23] McMeeking, R. M.; Landis, C. M.; Jimenez, S. M.A., A principle of virtual work for combined electrostatic and mechanical loading of materials, Int. J. Nonlinear Mech., 42, 6, 831-838, (2007)
[24] Miehe, C.; Göktepe, S.; Lulei, F., A micro-macro approach to rubber-like materials-part i: the non-affine micro-sphere model of rubber elasticity, J. Mech. Phys. Solids, 52, 2617-2660, (2004) · Zbl 1091.74008
[25] Onsager, L., Electric moments of molecules in liquids, J. Am. Chem. Soc., 58, 8, 1486-1493, (1936)
[26] Pao, Y.-H.; Hutter, K., Electrodynamics for moving elastic solids and viscous fluids, Proc. IEEE, 63, 1011-1021, (1975)
[27] Pelrine, R. E.; Kornbluh, R. D.; Joseph, J. P., Electrostriction of polymer dielectrics with compliant electrodes as a mean of actuation, Sens. Actuators A, 64, 77-85, (1998)
[28] Pelrine, R.; Kornbluh, R.; Eckerle, J.; Jeuck, P.; Oh, S.; Pei, Q.; Stanford, S., Dielectric elastomers: generator mode fundamentals and applications, (Bar Cohen, Y., Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices, vol. 4329, (2001)), 148-156, Bellingham, WA
[29] Pelrine, R.; Kornbluh, R.; Joseph, J.; Heydt, R.; Pei, Q.; Chiba, S., High-field deformation of elastomeric dielectrics for actuators, Mater. Sci. Eng., 11, 89-100, (2000)
[30] Rudykh, S.; Bhattacharya, K.; deBotton, G., Snap-through actuation of thick-wall electroactive balloons, Int. J. Nonlinear Mech., 47, 206-209, (2012)
[31] Rudykh, S.; Lewinstein, A.; Uner, G.; deBotton, G., Analysis of microstructural induced enhancement of electromechanical coupling in soft dielectrics, Appl. Phys. Lett., 102, 151905, (2013)
[32] Shmuel, G.; Gei, M.; deBotton, G., The Rayleigh-Lamb wave propagation in dielectric elastomer layers subjected to large deformations, Int. J. Nonlinear Mech., 47, 307-316, (2012)
[33] Stockmayer, W. H., Dielectric dispersion in solutions of flexible polymers, Pure Appl. Chem., 15, 539-554, (1967)
[34] Stoyanov, H.; Kollosche, M.; McCarthy, D. N.; Kofod, G., Molecular composites with enhanced energy density for electroactive polymers, J. Mater. Chem., 20, 7558-7564, (2010)
[35] Tagarielli, V. L.; Hildick-Smith, R.; Huber, J. E., Electro-mechanical properties and electrostriction response of a rubbery polymer for eap applications, Int. J. Solids Struct., 49, 3409-3415, (2012)
[36] Thylander, S.; Menzel, A.; Ristinmaa, M., An electromechanically coupled micro-sphere framework: application to the finite element analysis of electrostrictive polymers, Smart Mater. Struct., 21, 094008, (2012)
[37] Tian, L.; Tevet-Deree, L.; deBotton, G.; Bhattacharya, K., Dielectric elastomer composites, J. Mech. Phys. Solids, 60, 181-198, (2012) · Zbl 1244.74014
[38] Tiersten, H. F., A development of the equations of electromagnetism in material continua, Springer Tracts in Natural Philosophy, vol. 36, (1990), Springer-Verlag New York · Zbl 0723.73069
[39] Toupin, R. A., The elastic dielectric, Indiana Univ. Math. J., 5, 849-915, (1956) · Zbl 0072.23803
[40] Treloar, L. R.G., The elasticity of a network of long-chain molecules. I, Trans. Faraday Soc., 39, 36-41, (1943)
[41] Wang, M. C.; Guth, E., Statistical theory of networks of non-Gaussian flexible chains, J. Chem. Phys., 20, 1144-1157, (1952)
[42] Wissler, M.; Mazza, E., Electromechanical coupling in dielectric elastomer actuators, Sens. Actuators A Phys., 138, 384-393, (2007)
[43] Ymeri, H. M., Toupin’s variational principle and electric free enthalpy for dielectric bodies, Electr. Eng., 80, 163-167, (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.