×

Longitudinal elastic tension of two-layered plates from isotropic auxetics-nonauxetics and cubic crystals. (English) Zbl 1406.74055

Summary: Elastic longitudinal tension of thin two-layered plate composed of materials having positive and negative Poisson’s ratios (auxetics and nonauxetics) is considered. Isotropic materials and crystals with cubic fourfold symmetry axis coinciding with the direction of tension are analyzed. The analytical dependences for effective Poisson’s ratios of the plates on the ratio of layer thicknesses, Poisson’s ratios and Young’s moduli ratios of initial joined materials are derived. It was found that effective Poisson’s ratio do not follow the rule of mixtures. Violation is particularly essential for the strong initial isotropic auxetics and incompressible isotropic nonauxetics. Derivation of general formulas for effective Poisson’s ratios and effective Young’s modulus of two-layered plates from cubic crystals is given. The derived formula for effective Young’s modulus in the limit of initial isotropic materials coincides with formulas obtained previously in the literature. We show several examples of cubic crystals, auxetics-nonauxetics such that effective Poisson’s ratios of two-layered plates may substantially exceed Poisson’s ratios of the initial crystals. Effective Young’s modulus may also exceed Young’s moduli of both initial crystals.

MSC:

74A50 Structured surfaces and interfaces, coexistent phases
74E30 Composite and mixture properties
Full Text: DOI

References:

[1] Baughman, R. H.; Shacklette, J. M.; Zakhidov, A. A.; Stafström, S., Negative Poisson’s ratios as a common feature of cubic metals, Nature, 392, 6674, 362-365, (1998)
[2] Branka, A. C.; Heyes, D. M.; Wojciechowski, K. W., Auxeticity of cubic materials, Phys. Status Solidi B, 246, 9, 2063-2071, (2009)
[3] Branka, A. C.; Heyes, D. M.; Wojciechowski, K. W., Auxeticity of cubic materials under pressure, Phys. Status Solidi B, 248, 1, 96-104, (2011)
[4] Branka, A. C.; Heyes, D. M.; Maćkowiak, S.; Pieprzyk, S.; Wojciechowski, K. W., Cubic materials in different auxetic regions: linking microscopic to macroscopic formulations, Phys. Status Solidi B, 249, 7, 1373-1378, (2012)
[5] Chirima, G. T.; Zied, K. M.; Ravirala, N.; Alderson, K. L.; Alderson, A., Numerical and analytical modelling of multi-layer adhesive-film interface systems, Phys. Status Solidi B, 246, 9, 2072-2082, (2009)
[6] Friis, E. A.; Lakes, R. S.; Park, J. B., Negative Poisson’s ratio polymeric and metallic foams, J. Mater. Sci., 23, 12, 4406-4414, (1988)
[7] Goldstein, R. V.; Gorodtsov, V. A.; Lisovenko, D. S., Auxetic mechanics of crystalline materials, Mech. Solids, 45, 4, 529-545, (2010)
[8] Goldstein, R. V.; Gorodtsov, V. A.; Lisovenko, D. S., Cubic auxetics, Dokl. Phys., 56, 7, 399-402, (2011)
[9] Goldstein, R. V.; Gorodtsov, V. A.; Lisovenko, D. S., Youngs modulus of cubic auxetics, Lett. Mater., 1, 3, 127-132, (2011)
[10] Goldstein, R. V.; Gorodtsov, V. A.; Lisovenko, D. S., Variability of elastic properties of hexagonal auxetics, Dokl. Phys., 56, 12, 602-605, (2011)
[11] Goldstein, R. V.; Gorodtsov, V. A.; Lisovenko, D. S., Relation of Poisson’s ratio on average with Young’s modulus. auxetics on average, Dokl. Phys., 57, 4, 174-178, (2012)
[12] Goldstein, R. V.; Gorodtsov, V. A.; Lisovenko, D. S., Shear modulus of cubic crystals, Lett. Mater., 2, 1, 21-24, (2012)
[13] Goldstein, R. V.; Gorodtsov, V. A.; Lisovenko, D. S., Classification of cubic auxetics, Phys. Status Solidi B, 250, 10, 2038-2043, (2013)
[14] Goldstein, R. V.; Gorodtsov, V. A.; Lisovenko, D. S., Young’s moduli and Poisson’s ratios of curvilinear anisotropic hexagonal and rhombohedral nanotubes. nanotubes-auxetics, Dokl. Phys., 58, 9, 400-404, (2013)
[15] Goldstein, R. V.; Gorodtsov, V. A.; Lisovenko, D. S.; Volkov, M. A., Negative Poisson’s ratio for cubic crystals and nano/microtubes, Phys. Mesomech., 17, 2, 97-115, (2014)
[16] Goldstein, R. V.; Gorodtsov, V. A.; Lisovenko, D. S.; Volkov, M. A., Negative Poisson’s ratio for six-constant tetragonal nano/microtubes, Phys. Status Solidi B, 252, 7, 1580-1586, (2015)
[17] Goldstein, R. V.; Gorodtsov, V. A.; Lisovenko, D. S.; Volkov, M. A., Auxetics among 6-constant tetragonal crystals, Lett. Mater., 5, 4, 409-413, (2015)
[18] Goldstein, R. V.; Gorodtsov, V. A.; Lisovenko, D. S., Young’s modulus and Poisson’s ratio for seven-constant tetragonal crystals and nano/microtubes, Phys. Mesomech., 18, 3, 213-222, (2015)
[19] Goldstein, R. V.; Gorodtsov, V. A.; Lisovenko, D. S.; Volkov, M. A., Mechanical characteristics for seven-constant rhombohedral crystals and their nano/microtubes, Lett. Mater., 6, 2, 93-97, (2016)
[20] Goldstein, R. V.; Gorodtsov, V. A.; Lisovenko, D. S.; Volkov, M. A., Auxeticity in nano/microtubes produced from orthorhombic crystals, Smart Mater. Struct., 25, 5, 054006, (2016)
[21] Kocer, C.; McKenzie, D.; Bilek, M., Elastic properties of a material composed of alternating layers of negative and positive Poisson’s ratio, Mater. Sci. Eng. A, 505, 1-2, 111-115, (2009)
[22] Krasavin, V. V.; Krasavin, A. V., Auxetic properties of cubic metal single crystals, Phys. Status Solidi B, 251, 11, 2314-2320, (2014)
[23] Lakes, R., Foam structures with a negative Poisson’s ratio, Science, 235, 4792, 1038-1040, (1987)
[24] Lim, T.-C., On simultaneous positive and negative Poisson’s ratio laminates, Phys. Status Solidi B, 244, 3, 910-918, (2007)
[25] Lim, T.-C., Out-of-plane modulus of semi-auxetic laminates, Eur. J. Mech. A Solids, 28, 4, 752-756, (2009) · Zbl 1167.74378
[26] Lim, T.-C., In-plane stiffness of semiauxetic laminates, J. Eng. Mech., 136, 9, 1176-1180, (2010)
[27] Lim, T.-C., Mixed auxeticity of auxetic sandwich structures, Phys. Status Solidi B, 249, 7, 1366-1372, (2012)
[28] Lim, T.-C., Auxetic materials and structures, (2015), Springer Singapore
[29] Lim, T.-C.; Acharya, U. R., Counterintuitive modulus from semi-auxetic laminates, Phys. Status Solidi B, 248, 1, 60-65, (2011)
[30] Liu, B.; Feng, X.; Zhang, S.-M., The effective Young’s modulus of composites beyond the Voigt estimation due to the Poisson effect, Comp. Sci. Tech., 69, 13, 2198-2204, (2009)
[31] (Nelson, D. F., Second and Higher Order Elastic Constants, (1992), Springer), Vol. 29a of Landolt-Börnstein - Group III Condensed Matter
[32] Norris, A. N., Poisson’s ratio in cubic materials, Proc. Roy. Soc. A, 462, 2075, 3385-3405, (2006) · Zbl 1149.74314
[33] Paszkiewicz, T.; Wolski, S., Anisotropic properties of mechanical characteristics and auxeticity of cubic crystalline media, Phys. Status Solidi B, 244, 3, 966-977, (2007)
[34] Paszkiewicz, T.; Wolski, S., Elastic properties of cubic crystals: every’s versus Blackman’s diagram, J. Phys. Conf. Ser., 104, 012038, (2008)
[35] Ramirez, M.; Nava-Gómez, G. G.; Sabina, F. J.; Camacho-Montes, H.; Guinovart-Díaz, R.; Rodríguez-Ramos, R.; Bravo-Castillero, J., Enhancement of Young’s moduli and auxetic windows in laminates with isotropic constituents, Int. J. Eng. Sci., 58, 95-114, (2012)
[36] Raransky, M.; Balazyuk, V.; Gunko, M., Auxeticity properties of hexagonal syngony crystals, Phys. Chem. Solid State, 16, 1, 34-43, (2015)
[37] Raransky, M. D.; Balazyuk, V. N.; Gunko, M. M.; Gevik, V. B.; Struk, A. Y., Formation of auxetic surfaces in rhombic syngony single crystals, Proc. SPIE, 9809, 98090Q, (2015)
[38] Schärer, U.; Jung, A.; Wachter, P., Brillouin spectroscopy with surface acoustic waves on intermediate valent, doped sms, Phys. B, 244, 148-153, (1998)
[39] Strek, T.; Jopek, H.; Maruszewski, B. T.; Nienartowicz, M., Computational analysis of sandwich-structured composites with an auxetic phase, Phys. Status Solidi B, 251, 2, 354-366, (2014)
[40] Tokmakova, S. P., Stereographic projections of Poisson’s ratio in auxetic crystals, Phys. Status Solidi B, 242, 3, 721-729, (2005)
[41] Volkov, M. A., Extreme values of Poisson’s ratio for triclinic and monoclinic crystals, Lett. Mater., 4, 3, 167-170, (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.