×

An estimation procedure for the Hawkes process. (English) Zbl 1406.62118

Summary: In this paper, we present a nonparametric estimation procedure for the multivariate Hawkes point process. The timeline is cut into bins and – for each component process – the number of points in each bin is counted. As a consequence of earlier results in [M. Kirchner, Stochastic Processes Appl. 126, No. 8, 2494–2525 (2016; Zbl 1338.60133)], the distribution of the resulting ‘bin-count sequences’ can be approximated by an integer-valued autoregressive model known as the (multivariate) INAR(\(p\)) model. We represent the INAR(\(p\)) model as a standard vector-valued linear autoregressive time series with white-noise innovations (VAR(\(p\))). We establish consistency and asymptotic normality for conditional least-squares estimation of the VAR(\(p\)), respectively, the INAR(\(p\)) model. After appropriate scaling, these time-series estimates yield estimates for the underlying multivariate Hawkes process as well as corresponding variance estimates. The estimates depend on a bin-size \(\Delta\) and a support \(s\). We discuss the impact and the choice of these parameters. All results are presented in such a way that computer implementation, e.g. in R, is straightforward. Simulation studies confirm the effectiveness of our estimation procedure. In the second part of the paper, we present a data example where the method is applied to bivariate event-streams in financial limit-order-book data. We fit a bivariate Hawkes model on the joint process of limit and market order arrivals. The analysis exhibits a remarkably asymmetric relation between the two component processes: incoming market orders excite the limit-order flow heavily whereas the market-order flow is hardly affected by incoming limit orders. For the estimated excitement functions, we observe power-law shapes, inhibitory effects for lags under 0.003 s, second periodicities and local maxima at 0.01, 0.1 and 0.5 s.

MSC:

62P05 Applications of statistics to actuarial sciences and financial mathematics
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)

Citations:

Zbl 1338.60133

Software:

Matrix

References:

[1] Aït-Sahalia, Y., Cacho-Diaz, J. and Laeven, R., Modeling financial contagion using mutually exciting jump processes. J. Financ. Econ., 2015, 117, 585-606.
[2] Akaike, H., Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory, pp. 276-281, 1973 (Budapest). · Zbl 0283.62006
[3] Alfonsi, A. and Blanc, P., Extension and calibration of a Hawkes-based optimal execution model. arXiv:1506.08740, 2015.
[4] Bacry, E., Dayri, K. and Muzy, J., Non-parametric kernel estimation for symmetric Hawkes processes. Application to high frequency data. Eur. Phys. J. B, 2012, 85, 157. Available online at: https://protect-us.mimecast.com/s/RKWoBRSb87eVi4?domain=dx.doi.org.
[5] Bacry, E., Delattre, S., Hofmann, M. and Muzy, J., Scaling limits for Hawkes processes and application to financial statistics. Stoch. Process. Appl., 2013, 123, 2475-2499. · Zbl 1292.60032
[6] Bacry, E., Jaisson, T. and Muzy, J., Estimation of slowly decreasing Hawkes kernels: Application to high frequency order book modelling. arXiv:1412.7096, 2014.
[7] Bacry, E. and Muzy, J., Second order statistics characterization of Hawkes processes and non-parametric estimation. arXiv:1401.0903v2, 2015. · Zbl 1359.62160
[8] Bates, D. and Maechler, M., Matrix: Sparse and dense matrix classes and methods. R package version 1.1-5, 2015. Available online at: http://CRAN.R-project.org/package=Matrix.
[9] Bowsher, C., Modelling security market events in continuous time: Intensity based, multivariate point process models. Nuffield College Economics Discussion Papers, 2002, pp. 1-55.
[10] Brémaud, P. and Massoulié, L., Stability of nonlinear Hawkes processes. Ann. Probab., 1996, 24, 1563-1588. · Zbl 0870.60043
[11] Brémaud, P. and Massoulié, L., Hawkes branching processes without ancestors. J. Appl. Probab., 2001, 38, 122-135. · Zbl 0983.60048
[12] Brown, T. and Nair, M., A simple proof of the multivariate random time change theorem for point processes. J. Appl. Probab., 1988, 25, 210-214. · Zbl 0648.60057
[13] Chavez-Demoulin, V., Davison, A. and McNeil, A., Estimating value-at-risk: A point process approach. Quant. Finance, 2005, 5, 227-234. · Zbl 1118.91353
[14] Chavez-Demoulin, V. and McGill, J., High-frequency financial data modeling using Hawkes processes. J. Bank. Finance, 2012, 36, 3415-3426.
[15] Crane, R. and Sornette, D., Robust dynamic classes revealed by measuring the response function of a social system. PNAS, 2008, 105, 15649-15653.
[16] Daley, D. and Vere-Jones, D., An Introduction to the Theory of Point Processes, 2nd ed., Vol. I and II, 2003 (Springer: New York). · Zbl 1026.60061
[17] Du, Y. and Li, J.G., The integer-valued autoregressive (INAR(p)) model. J. Time Ser. Anal., 1991, 12, 129-142. · Zbl 0727.62084
[18] Durrett, R., Probability: Theory and Examples, 2nd ed., 1996 (Duxbury Press: Belmont). · Zbl 1202.60001
[19] Embrechts, P. and Kirchner, M., Hawkes graphs. Theor. Probab. Appl., 2016, forthcoming. · Zbl 1390.60176
[20] Embrechts, P., Liniger, T. and Lu, L., Multivariate Hawkes processes: An application to financial data. J. Appl. Probab., 2011, 48(A), 367-378. · Zbl 1242.62093
[21] Errais, E., Gieseke, K. and Goldberg, L., Affine point processes and portfolio credit risk. Soc. Indus. Appl. Math.: J. Financ. Math., 2010, 1, 642-665. · Zbl 1200.91296
[22] Filiminov, V. and Sornette, D., Scaling limits for Hawkes processes and financial data modeling. Preprint, 2012.
[23] Fokianos, K. and Kedem, B., Regression Models for Time Series Analysis, 2012 (Wiley: New York). · Zbl 1011.62089
[24] Gould, M., Porter, M., Williams, S., McDonald, M., Fenn, D. and Howison, S., Limit order books. arXiv:1012.0349, 2013. · Zbl 1284.91584
[25] Hamilton, J., Time Series Analysis, 1994 (Princeton University Press: Princeton). · Zbl 0831.62061
[26] Hannan, E., Multiple Time Series, 1970 (Wiley: New York). · Zbl 0211.49804
[27] Hansen, N., Reynaud-Bouret, P. and Rivoirard, V., Lasso and probabilistic inequalities for multivariate point processes. Bernoulli, 2015, 21, 83-143. · Zbl 1375.60092
[28] Hardiman, S., Bercot, N. and Bouchaud, J.P., Critical reflexivity in financial markets: A Hawkes process analysis. Eur. Phys. J. B, 2013, 86, 442. Available online at: https://protect-us.mimecast.com/s/vleRBAsbXV38i0?domain=dx.doi.org.
[29] Hawkes, A., Point spectra of some mutually-exciting point processes. J. R. Stat. Soc. Ser. B, 1971a, 33, 438-443. · Zbl 0238.60094
[30] Hawkes, A., Spectra of some self-exciting and mutually-exciting point processes. Biometrika, 1971b, 58, 83-90. · Zbl 0219.60029
[31] Hawkes, A., A cluster representation of a self-exciting point process. J. Appl. Probab., 1974, 11, 493-503. · Zbl 0305.60021
[32] Jaisson, T. and Rosenbaum, M., Limit theorems for nearly unstable Hawkes processes. Ann. Appl. Probab., 2015, 25, 600-631. · Zbl 1319.60101
[33] Kim, H., Spatio-temporal point process models for the spread of avian influenza virus (H5N1). PhD Thesis, University of California, Berkeley, 2011.
[34] Kirchner, M., Hawkes and INAR(∞) processes. Stoch. Process. Appl., 2016, 162, 2494-2525. · Zbl 1338.60133
[35] Kirchner, M. and Vetter, S., Order arrivals in the limit order book: A model based on Hawkes processes. In preparation, 2016.
[36] Klimko, L. and Nelson, P., On conditional least squares estimation for stochastic processes. Ann. Stat., 1978, 6, 629-642. · Zbl 0383.62055
[37] Latour, A., The multivariate GINAR(p) process. Adv. Appl. Probab., 1997, 29, 228-248. · Zbl 0871.62073
[38] Lemonnier, R. and Vayatis, N., Nonparametric Markovian learning of triggering kernels for mutually exciting and mutually inhibiting multivariate Hawkes processes. In Machine Learning and Knowledge Discovery in Databases, edited by W. Daelemans and K. Morik, pp. 161-176, 2014 (Springer: Berlin).
[39] Lewis, E. and Mohler, G., A nonparametric EM algorithm for multiscale Hawkes processes, 2011. Available online at: http://paleo.sscnet.ucla.edu/Lewis-Molher-EM_Preprint.pdf.
[40] Liniger, T., Multivariate Hawkes processes. PhD Thesis, ETH Zurich, 2009.
[41] Lütkepohl, H., New Introduction to Multiple Time Series Analysis, 2005 (Springer: Berlin). · Zbl 1072.62075
[42] McNeil, A., Frey, R. and Embrechts, P., Quantitative Risk Management, 2005 (Princeton University Press: Princeton). · Zbl 1089.91037
[43] Meyer, P., Démonstration simplifiée d’un théorème de Knight [Simplified demonstration of a theorem of {K}night.]. Lect. Notes Math., 1971, 191, 191-195.
[44] Mikosch, T. and Stărică, C., Is it really long memory that we see in financial returns? In Extremes and Integrated Risk Management, edited by P. Embrechts, pp. 149-168, 2000 (Risk Books: London).
[45] Mohler, G.O., Short, M.B., Brantingham, P.J., Schoenberg, F.P. and Tita, G.E., Self-exciting point process modeling of crime. J. Am. Stat. Assoc., 2011, 106, 100-108. · Zbl 1396.62224
[46] Muzy, J. and Bacry, E., Hawkes model for price and trades high-frequency dynamics. Quant. Finance, 2014, 14, 1147-1166. · Zbl 1402.91750
[47] Ogata, Y., Statistical models for earthquake occurences and residual analysis for point processes. J. Am. Stat. Assoc., 1988, 83, 9-27.
[48] Reinsel, G., Elements of Multivariate Time Series Analysis, 2nd ed., 1997 (Springer: New York). · Zbl 0873.62086
[49] Reynaud-Bouret, P., Rivoirard, V., Grammont, F. and Tuleau-Mal, C., Goodness-of-fit tests and nonparametric adaptive estimation for spike train analysis. J. Math. Neurosci., 2014, 4, 1-41. · Zbl 1321.92047
[50] Reynaud-Bouret, P. and Schbath, S., Adaptive estimation for Hawkes processes; Application to genome analysis. Ann. Stat., 2010, 38, 2781-2822. · Zbl 1200.62135
[51] da Silva, I.M., Contributions to the analysis of discrete-valued time series. PhD Thesis, Departamento de Matematica Aplicada Faculdade de Ciencias da Universidade do Porto, 2005.
[52] Steutel, F. and van Harn, K., Discrete analogues of self-decomposability and stability. Ann. Probab., 1979, 7, 893-899. · Zbl 0418.60020
[53] Zhang, H., Wang, D. and Zhu, F., Inference for INAR(p) processes with signed generalized power series thinning operator. J. Stat. Plan. Inference, 2010, 140, 676-683. · Zbl 1177.62110
[54] Zhao, H., A dynamic contagion process for modelling contagion risk in finance and insurance. PhD Thesis, The London School of Economics and Political Science, 2012.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.