×

Estimation and variable selection for partially functional linear models. (English) Zbl 1406.62034

Summary: In this paper, a new estimation procedure based on composite quantile regression and functional principal component analysis (PCA) method is proposed for the partially functional linear regression models (PFLRMs). The proposed estimation method can simultaneously estimate both the parametric regression coefficients and functional coefficient components without specification of the error distributions. The proposed estimation method is shown to be more efficient empirically for non-normal random error, especially for Cauchy error, and almost as efficient for normal random errors. Furthermore, based on the proposed estimation procedure, we use the penalized composite quantile regression method to study variable selection for parametric part in the PFLRMs. Under certain regularity conditions, consistency, asymptotic normality, and Oracle property of the resulting estimators are derived. Simulation studies and a real data analysis are conducted to assess the finite sample performance of the proposed methods.

MSC:

62G08 Nonparametric regression and quantile regression
62G20 Asymptotic properties of nonparametric inference
62J05 Linear regression; mixed models

Software:

pffr; fda (R)
Full Text: DOI

References:

[1] Aneiros, G.; Ferraty, F.; Vieu, P., Variable selection in partial linear regression with functional covariate, Statistics, 49, 6, 1322-1347, (2015) · Zbl 1337.62071
[2] Brown, P. J.; Fearn, T.; Vannucci, M., Bayesian wavelet regression on curves with application to a spectroscopic calibration problem, Journal of the American Statistical Association, 96, 454, 398-408, (2001) · Zbl 1022.62027
[3] Cai, T.; Hall, P., Prediction in functional linear regression, The Annals of Statistics, 34, 5, 2159-2179, (2006) · Zbl 1106.62036
[4] Fan, J.; Li, R., Variable selection via nonconcave penalized likelihood and its oracle properties, Journal of the American Statistical Association, 96, 1348-1360, (2001) · Zbl 1073.62547
[5] Gertheiss, J.; Maity, A.; Staicu, A.-M., Variable selection in generalized functional linear models, Stat, 2, 86-101, (2014) · Zbl 07847473
[6] Greven, S.; Scheipl, F., A general framework for functional regression modelling, Statistical Modelling, 17, 1-35, (2017) · Zbl 07289474
[7] Hall, P.; Horowitz, J., Methodology and convergence rates for functional linear regression, The Annals of Statistics, 35, 70-91, (2007) · Zbl 1114.62048
[8] He, X.; Zhu, Z. Y.; Fung, W. K., Estimation in a semiparametric model for longitudinal data with unspecified dependence structure, Biometrika, 90, 579-590, (2002) · Zbl 1036.62035
[9] Horváth, L.; Kokoszka, P., Inference for functional data with applications, (2012), Springer New York · Zbl 1279.62017
[10] Huang, L.; Zhao, J.; Wang, H.; Wang, S., Robust shrinkage estimation and selection for functional multiple linear model through LAD loss, Computational Statistics & Data Analysis, 103, 384-400, (2016) · Zbl 1466.62103
[11] Kai, B.; Li, R.; Zou, H., Local composite quantile regression smoothing: an efficient and safe alternative to local polynomial regression, Journal of the Royal Statistical Society. Series B., 72, 49-69, (2010) · Zbl 1411.62101
[12] Kai, B.; Li, R.; Zou, H., New efficient estimation and variable selection methods for semiparametric varying-coefficient partially linear models, The Annals of Statistics, 39, 305-332, (2011) · Zbl 1209.62074
[13] Knight, K., Limiting distributions for \(l_1\) regression estimators under general conditions, The Annals of Statistics, 26, 2, 755-770, (1998) · Zbl 0929.62021
[14] Koenker, R., Quantile regression, (2005), Cambridge University Press Cambridge · Zbl 1111.62037
[15] Koenker, R.; Bassett, G. S., Regression quantiles, Econometrica, 46, 33-50, (1978) · Zbl 0373.62038
[16] Kong, D.; Xue, K.; Yao, F.; Zhang, H. H., Partially functional linear regression in high dimensions, Biometrika, 103, 147-159, (2016) · Zbl 1452.62500
[17] Lian, H., Shrinkage estimation and selection for multiple functional regression, Statistica Sinica, 23, 51-74, (2013) · Zbl 1257.62041
[18] Lu, Y.; Du, J.; Sun, Z., Functional partially linear quantile regression model, Metrika, 77, 3, 317-332, (2014) · Zbl 1304.62058
[19] Mas, A.; Pumo, B., Linear processes for functional data, 47-71, (2009), Oxford Univ Press
[20] Matsui, H.; Konishi, S., Variable selection for functional regression models via the L1 regularization, Computational Statistics & Data Analysis, 55, 3304-3310, (2011) · Zbl 1271.62140
[21] Morris, J. S., Functional regression, Annual Review of Statistics and Its Application, 2, 321-359, (2015)
[22] Müller, H.; Stadtmüller, U., Generalized functional linear models, The Annals of Statistics, 33, 774-805, (2005) · Zbl 1068.62048
[23] Pannu, J.; Billor, N., Robust group-lasso for functional regression model, Communications in Statistics. Simulation and Computation, 46, 3356-3374, (2017) · Zbl 1422.62260
[24] Ramsay, J. O.; Silverman, B. W., Applied functional data analysis: methods and case studies, (2002), Springer New York · Zbl 1011.62002
[25] Ramsay, J. O.; Silverman, B. W., Functional data analysis, (2005), Springer New York · Zbl 1079.62006
[26] Reiss, P. T.; Goldsmith, J.; Shang, H. L.; Ogden, R. T., Methods for scalar-on-function regression, International Statistical Review, 85, 228-249, (2017) · Zbl 07763546
[27] Sentürk, D.; Müller, H., Functional varying coefficient models for longitudinal data, Journal of the American Statistical Association, 105, 1256-1264, (2010) · Zbl 1390.62135
[28] Shin, H., Partial functional linear regression, Journal of Statistical Planning and Inference, 139, 3405-3418, (2009) · Zbl 1168.62358
[29] Tibshirani, R., Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society. Series B., 58, 267-288, (1996) · Zbl 0850.62538
[30] Wang, J. L.; Chiou, J. M.; Müller, H. G., Functional data analysis, Annual Review of Statistics and Its Application, 3, 257-295, (2016)
[31] Wang, L.; Kai, B.; Li, R., Local rank inference for varying coefficient models, Journal of the American Statistical Association, 104, 488, 1631-1645, (2009) · Zbl 1205.62092
[32] Wei, Y.; He, X., Conditional growth charts, The Annals of Statistics, 34, 5, 2069-2097, (2006) · Zbl 1106.62049
[33] Yao, F.; Müller, H.; Wang, J., Functional linear regression analysis for longitudinal data, The Annals of Statistics, 33, 2873-2903, (2005) · Zbl 1084.62096
[34] Yao, F.; Sue-Chee, S.; Wang, F., Regularized partially functional quantile regression, Journal of Multivariate Analysis, 156, 39-56, (2017) · Zbl 1369.62083
[35] Zhang, C. H., Nearly unbiased variable selection under minimax concave penalty, The Annals of Statistics, 38, 894-942, (2010) · Zbl 1183.62120
[36] Zou, H., The adaptive lasso and its oracle properties, Journal of the American Statistical Association, 101, 1418-1429, (2006) · Zbl 1171.62326
[37] Zou, H.; Yuan, M., Composite quantile regression and the oracle model selection theory, The Annals of Statistics, 36, 1108-1126, (2008) · Zbl 1360.62394
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.