×

Hyperbolic manifolds containing high topological index surfaces. (English) Zbl 1406.57014

This paper contains two main results. The first one (Theorem 1.2) is one of the numerous generalisations of a result of K. Hartshorn [Pac. J. Math. 204, No. 1, 61–75 (2002; Zbl 1065.57021)]. It is a technical result relating the complexity of an essential surface \(S\) in a closed \(3\)-manifold \(M\) and its graph bridge distance. More precisely, it states that the graph distance of a graph that is in bridge position with respect to a Heegaard surface of \(M\) is bounded above by \(2(2g(S) + |\partial S| - 1)\), where \(g(S)\) is the genus of \(S\). This Theorem is a key ingredient in the proof of the second main result of the paper (Theorem 1.1). The authors generalise the construction in [D. Bachman and J. Johnson, Math. Res. Lett. 17, No. 3, 389–394 (2010; Zbl 1257.57026)] to show that there is a closed \(3\)-manifold \(M^1\), with an index \(1\) Heegaard surface \(S\), such that for each \(n\), the lift of \(S\) to some \(n\)-fold cover \(M^n\) of \(M^1\) has topological index \(n\). Moreover, \(M^n\) is hyperbolic for all \(n\). The construction of \(M^n\) is very explicit. The authors take a special two component link in the three sphere and modify it by adding arcs. Then they remove tubular neighbourhoods of the two resulting graphs to obtain a three manifold \(M'\) with two boundary components. The manifold \(M^n\) is the closed manifold generated by gluing \(n\) copies of \(M'\) by pairing their boundaries.

MSC:

57N10 Topology of general \(3\)-manifolds (MSC2010)
57M50 General geometric structures on low-dimensional manifolds
57M15 Relations of low-dimensional topology with graph theory

References:

[1] 10.2140/gt.2010.14.585 · Zbl 1206.57020 · doi:10.2140/gt.2010.14.585
[2] 10.1007/s00208-012-0802-4 · Zbl 1260.57036 · doi:10.1007/s00208-012-0802-4
[3] 10.4310/MRL.2010.v17.n3.a1 · Zbl 1257.57026 · doi:10.4310/MRL.2010.v17.n3.a1
[4] 10.2140/pjm.2005.219.221 · Zbl 1086.57011 · doi:10.2140/pjm.2005.219.221
[5] 10.2140/agt.2013.13.2925 · Zbl 1278.57004 · doi:10.2140/agt.2013.13.2925
[6] 10.1007/s00208-016-1392-3 · Zbl 1360.57014 · doi:10.1007/s00208-016-1392-3
[7] 10.4007/annals.2004.160.27 · Zbl 1070.53031 · doi:10.4007/annals.2004.160.27
[8] 10.4007/annals.2004.160.69 · Zbl 1070.53032 · doi:10.4007/annals.2004.160.69
[9] 10.4007/annals.2004.160.523 · Zbl 1076.53068 · doi:10.4007/annals.2004.160.523
[10] 10.4007/annals.2004.160.573 · Zbl 1076.53069 · doi:10.4007/annals.2004.160.573
[11] 10.4007/annals.2015.181.1.1 · Zbl 1322.53059 · doi:10.4007/annals.2015.181.1.1
[12] 10.1016/j.topol.2016.03.006 · Zbl 1337.57053 · doi:10.1016/j.topol.2016.03.006
[13] 10.1016/S0166-8641(96)00177-0 · Zbl 0888.57003 · doi:10.1016/S0166-8641(96)00177-0
[14] 10.2140/pjm.2002.204.61 · Zbl 1065.57021 · doi:10.2140/pjm.2002.204.61
[15] ; Kneser, Jahresbericht der Deutschen Mathematiker-Vereinigung, 38, 248 (1929)
[16] 10.1090/S0002-9939-2015-12455-0 · Zbl 1315.57023 · doi:10.1090/S0002-9939-2015-12455-0
[17] 10.2140/agt.2016.16.3419 · Zbl 1420.57028 · doi:10.2140/agt.2016.16.3419
[18] 10.1016/j.topol.2007.05.011 · Zbl 1129.57027 · doi:10.1016/j.topol.2007.05.011
[19] 10.1007/s10711-015-0094-4 · Zbl 1334.57016 · doi:10.1007/s10711-015-0094-4
[20] 10.1016/j.topol.2011.11.026 · Zbl 1253.05062 · doi:10.1016/j.topol.2011.11.026
[21] ; Rubinstein, Proceedings of the International Congress of Mathematicians, 601 (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.