×

Frobenius structures over Hilbert \(C^*\)-modules. (English) Zbl 1406.46039

The authors study the monoidal dagger category of Hilbert \(C^*\)-modules over a commutative \(C^*\)-algebra from the perspective of categorical quantum mechanics. A geometric description of Hilbert modules in terms of bundles is given in Section 4. In Section 5, the authors study dual objects and prove that dual objects are the finitely presented projective Hilbert \(C^*\)-modules. Dagger Frobenius structures are investigated in Section 6. Nontrivial examples of both commutative and central dagger Frobenius structures are also given. In Section 7, the authors apply bundle perspectives to dagger Frobenius structures and show that dagger Frobenius structures correspond to finite-dimensional \(C^*\)-algebras that vary continuously over the base space. Commutative special dagger Frobenius structures in the category of Hilbert modules are completely characterized in Section 8. The authors, in Section 9, reduce the study of special dagger Frobenius structures to the study of central ones and commutative ones by proving a transitivity theorem. Section 10 is devoted to the study of kernels. It turns out that the existence of kernels is related to clopen subsets and disconnectedness properties of the base space.

MSC:

46L08 \(C^*\)-modules
46M15 Categories, functors in functional analysis

References:

[1] Abramsky, S.; Brandenburger, A., The sheaf-theoretic structure of non-locality and contextuality, New J. Phys., 13, 113036, (2011) · Zbl 1448.81028 · doi:10.1088/1367-2630/13/11/113036
[2] Abramsky, S.; Heunen, C., H*-algebras and nonunital Frobenius algebras: first steps in infinite dimensional categorical quantum mechanics, AMS Proc. Symp. Appl. Math. Clifford Lect., 71, 1-24, (2012) · Zbl 1267.18007 · doi:10.1090/psapm/071/599
[3] Abramsky S., Heunen C.: Logic and algebraic structures in quantum computing and information.Chapter Operational Theories and Categorical Quantum Mechanics. Cambridge University Press, Cambridge (2015) · Zbl 1355.81028
[4] Aguiar, M., A note on strongly separable algebras, Bol. Acad. Nac. Ciencias, 65, 51-60, (2000) · Zbl 1006.16016
[5] Albert, A. A.; Muckenhoupt, B., On matrices of trace zero, Mich. Math. J., 4, 1-3, (1957) · Zbl 0077.24304 · doi:10.1307/mmj/1028990168
[6] Antonevich, A.; Krupnik, N., On trivial and non-trivial n-homogeneous C*-algebras, Integr. Equ. Oper. Theory, 38, 172-189, (2000) · Zbl 0970.47015 · doi:10.1007/BF01200122
[7] Auslander, M.; Goldman, O., The Brauer group of a commutative ring, Trans. Am. Math. Soc., 97, 367-409, (1960) · Zbl 0100.26304 · doi:10.1090/S0002-9947-1960-0121392-6
[8] Blackadar B.: Operator Algebras: Theory of C*-Algebras and Von Neumann Algebras. Springer, Berlin (2006) · Zbl 1092.46003 · doi:10.1007/3-540-28517-2
[9] Blanchard, E.; Kirchberg, E., Global glimm halving for C*-bundles, J. Oper. Theory, 52, 385-420, (2004) · Zbl 1073.46509
[10] Blecher D.P., LeMerdy C.: Operator Algebras and Their Modules, an Operator Space Approach. Oxford University Press, Oxford (2004) · Zbl 1061.47002 · doi:10.1093/acprof:oso/9780198526599.001.0001
[11] Blute, R.; Comeau, M., Von Neumann categories, Appl. Categ. Struct., 23, 725-740, (2015) · Zbl 1361.18004 · doi:10.1007/s10485-014-9375-6
[12] Bos, R., Continuous representations of groupoids, Houst. J. Math., 37, 807-844, (2011) · Zbl 1257.22006
[13] Buss, A.; Zhu, C.; Meyer, R., A higher category approach to twisted actions on C*-algebras, Proc. Edinb. Math. Soc., 56, 387-426, (2013) · Zbl 1276.46055 · doi:10.1017/S0013091512000259
[14] Coecke, B., Heunen, C., Kissinger, A.: Categories of quantum and classical channels. Quantum Information Processing (2014) · Zbl 1357.81039
[15] Coecke, B.; Lal, R., Causal categories: relativistically interacting processes, Found. Phys., 43, 458-501, (2012) · Zbl 1272.81008 · doi:10.1007/s10701-012-9646-8
[16] Dauns J., Hofmann K.H.: Representation of Rings by Sections. American Mathematical Society, Providence (1968) · Zbl 0174.05703
[17] DeMeyer F., Ingraham E.: Separable algebras over commutative rings Number 181 in Lecture Notes in Mathematics. Springer, Berlin (1971) · Zbl 0215.36602 · doi:10.1007/BFb0061226
[18] Dixmier, J.: C*-algebras. North Holland (1981) · Zbl 0473.46040
[19] Dixmier, J.; Douady, A., Champs continues d’espaces hilbertiens et de C*-algèbres, Bull. Soc. Math. Fr., 91, 227-284, (1963) · Zbl 0127.33102 · doi:10.24033/bsmf.1596
[20] Dupré, M. J., Classifying Hilbert bundles, J. Funct. Anal., 15, 244-278, (1974) · Zbl 0275.46050 · doi:10.1016/0022-1236(74)90035-4
[21] Enrique Moliner, P., Heunen, C., Tull, S.: Space in monoidal categories. Quantum Phsyics and Logic (2017). arXiv:1704.08086 · Zbl 0447.18005
[22] Fell J.M.G.: An extension of Mackey’s method to Banach *-algebraic bundles Number 90 in Memoirs. American Mathematical Society, Providence (1969) · Zbl 0194.44301
[23] Fell J.M.G., Doran R.S.: Representations of *-algebras, locally compact groups, and Banach *-algebraic bundles Number 125 126 in Pure and Applied Mathematics. Academic, Berlin (1988) · Zbl 0652.46050
[24] Frank, M., Hilbert C*-modules over monotone complete C*-algebras, Math. Nachr., 175, 61-83, (1995) · Zbl 0841.46035 · doi:10.1002/mana.19951750106
[25] Frank,M., Paulsen,V.: Injective and projective Hilbert C*-modules, and C*-algebras of compact operators (2006). arXiv:math.OA/0611348
[26] Furber, R. W.J.; Jacobs, B. P.F., From kleisli categories to commutative C*-algebras: probabilistic Gelfand duality, Log. Methods Comput. Sci., 11, 5, (2015) · Zbl 1391.68034 · doi:10.2168/LMCS-11(2:5)2015
[27] Ghez, P.; Lima, R.; Roberts, J. E., W*-categories, Pac. J. Math., 120, 79-109, (1985) · Zbl 0609.46033 · doi:10.2140/pjm.1985.120.79
[28] Gogioso, S., Genovese, F.: Infinite-dimensional categorical quantum mechanics. In: Quantum Physics and Logic (2016) · Zbl 1378.18003
[29] Hattori, A., On strongly separable algebras, Osaka J. Math., 2, 369-372, (1965) · Zbl 0168.28504
[30] Heunen, C, An embedding theorem for Hilbert categories, Theory Appl. Categ., 22, 321-344, (2009) · Zbl 1181.18004
[31] Heunen, C., Jacobs, B.: Quantum logic in dagger kernel categories 27(2), 177-212 (2010) · Zbl 1230.03095
[32] Heunen, C.; Karvonen, M., Monads on dagger categories, Theory Appl. Categ., 31, 1016-1043, (2016) · Zbl 1378.18003
[33] Heunen, C., Kissinger, A.: Can quantum theory be characterized in terms of information-theoretic constraints? (2016). arXiv:1604.05948 · Zbl 0609.46033
[34] Heunen, C., Kissinger, A., Selinger, P.: Completely positive projections and biproducts. In: Quantum Physics and Logic X, Number 171 in Electronic Proceedings in Theoretical Computer Science, pp. 71-83 (2014) · Zbl 1467.81022
[35] Heunen, C., Tull, S.: Categories of relations asmodels of quantumtheory. In: Quantum Physics and Logic XII, Number 195 in Electronic Proceedings in Theoretical Computer Science, pp. 247-261 (2015) · Zbl 0841.46035
[36] Heunen C., Vicary J.: Categories for Quantum Theory: An Introduction. Oxford University Press, Oxford (2017)
[37] Heunen, C., Vicary, J., Wester, L.: Mixed quantum states in higher categories. In: Quantum Physics and Logic, volume 172 of Electronic Proceedings in Theoretical Computer Science, pp. 304-315 (2014) · Zbl 1467.81017
[38] Ivankov, P.: Quantization of noncompact coverings (2017). arXiv:1702.07918
[39] Kelly, G. M.; Laplaza, M. L., Coherence for compact closed categories, J. Pure Appl. Algebra, 19, 193-213, (1980) · Zbl 0447.18005 · doi:10.1016/0022-4049(80)90101-2
[40] Lance E.C.: Hilbert C*-modules, volume 210 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (1995) A toolkit for operator algebraists · Zbl 0822.46080
[41] Paschke, W. L., Inner product modules over B*-algebras, Trans. Am. Math. Soc., 182, 443-468, (1973) · Zbl 0239.46062
[42] Paulsen V.: Completely Bounded Maps and Operator Algebras. Cambridge University Press, Cambridge (2002) · Zbl 1029.47003
[43] Pavlov, A. A.; Troitskii, E. V., Quantization of branched coverings, Russ. J. Math. Phys., 18, 338-352, (2011) · Zbl 1254.46064 · doi:10.1134/S1061920811030071
[44] Pluta R.: Ranges of Bimodule Projections and Conditional Expectations. Cambridge Scholars, Cambridge (2013) · Zbl 1306.46001
[45] Raeburn I., Williams D.P.: Morita Equivalence and Continuous-Trace C*-Algebras, volume 60 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (1998) · Zbl 0922.46050
[46] Rudin W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1987) · Zbl 0925.00005
[47] Selinger, P.: A survey of graphical languages for monoidal categories. In: New Structures for Physics, Lecture Notes in Physics, pp. 289-355. Springer, Berlin (2009) · Zbl 1217.18002
[48] Størmer E.: Positive Linear Maps of Operator Algebras. Springer, Berlin (2013) · Zbl 1269.46003 · doi:10.1007/978-3-642-34369-8
[49] Takahashi, A., Hilbert modules and their representation, Rev. Columbiana Mat., 13, 1-38, (1979) · Zbl 0463.46042
[50] Taylor M.E.: Measure Theory and Integration. American Mathematical Society, Providence (2006) · Zbl 1139.28001 · doi:10.1090/gsm/076
[51] Tomiyama, J., Topological representation of C*-algebras, Tohoku Math. J., 14, 187-204, (1962) · Zbl 0216.16201 · doi:10.2748/tmj/1178244174
[52] Tomiyama, J.; Takesaki, M., Applications of fibre bundles to the certain class of C*-algebras, Tohoku Math. J., 13, 498-522, (1961) · Zbl 0113.09701 · doi:10.2748/tmj/1178244253
[53] Tomiyama, Y., On the projection of norm one in W*-algebras, Proc. Jpn. Acad., 33, 608-612, (1957) · Zbl 0081.11201 · doi:10.3792/pja/1195524885
[54] Vicary, J., Categorical formulation of quantum algebras, Commun. Math. Phys., 304, 765-796, (2011) · Zbl 1221.81146 · doi:10.1007/s00220-010-1138-0
[55] Vicary, J.: Higher quantum theory (2012). arXiv:1207.4563 · Zbl 1006.16016
[56] Wegge-Olsen N.E.: K-Theory and C*-Algebras. Oxford University Press, Oxford (1993) · Zbl 0780.46038
[57] Yamagami, S., Frobenius duality in C*-tensor categories, J. Oper. Theory, 52, 3-20, (2004) · Zbl 1078.46045
[58] Zito, P. A., 2-C*-categories with non-simple units, Adv. Math., 210, 122-164, (2007) · Zbl 1229.18006 · doi:10.1016/j.aim.2006.05.017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.