×

Existence of multiple solutions to an elliptic problem with measure data. (English) Zbl 1406.35133

Summary: In this paper we prove the existence of multiple nontrivial solutions of the following equation:
\[ \begin{aligned} -\Delta _{p}u &= \lambda |u|^{q-2}u+f(x,u)+\mu \quad \text{in }\Omega ,\\ u & = 0 \quad \text{on }\partial \Omega, \end{aligned} \]
where \(\Omega \subset \mathbb {R}^N\) is a smooth bounded domain with \(N \geq 3\), \(1< q'< q < p-1\), \(\lambda \) and \(f\) satisfy certain conditions, \(\mu >0\) is a Radon measure, \(q'=\frac{q}{q-1}\) is the conjugate of \(q\).

MSC:

35J92 Quasilinear elliptic equations with \(p\)-Laplacian

References:

[1] Ambrosetti, A.; Rabinowitz, PH, Dual variational methods in critical point theory and applications, J. Func. Anal., 14, 349-381, (1973) · Zbl 0273.49063 · doi:10.1016/0022-1236(73)90051-7
[2] Bachman, G., Narici, L.: Functional analysis(. Dover Publications, Mineola (1966) · Zbl 0141.11502
[3] Molica Bisci, G.; Repovš, D.; Servadei, R., Nontrivial solutions of superlinear nonlocal problems, Forum Math, 28, 1095-1110, (2016) · Zbl 1351.49015 · doi:10.1515/forum-2015-0204
[4] Boccardo, L.; Gallouët, T., Nonlinear elliptic equations with right hand side measures, Comm. Partial Differ. Equ., 17, 641-655, (1992) · Zbl 0812.35043
[5] Brezis, H., Marcus, M., Ponce, A.C.: Nonlinear elliptic equations with measures revisited. arXiv:1312.6495 [math.AP] (2013) · Zbl 1151.35034
[6] Chung, NT; Minh, PH; Nga, TH, Multiple solutions for \(p\)-Laplacian problems involving general subcritical growth in bounded domains, Electon. J. Differ. Equ., 78, 1-12, (2016) · Zbl 1343.35110
[7] Costa, DG; Magalhães, CA, Variational elliptic problems which are nonquadratic at infinity, Nonlinear Anal., 23, 1401-1412, (1994) · Zbl 0820.35059 · doi:10.1016/0362-546X(94)90135-X
[8] Ekeland, I., On the variational principle, J. Math. Anal. Appl., 47, 324-353, (1974) · Zbl 0286.49015 · doi:10.1016/0022-247X(74)90025-0
[9] Ercole, G.; Pereira, G. A., Fractional Sobolev inequalities associated with singular problems, Mathematische Nachrichten, 291, 1666-1685, (2018) · Zbl 1439.35012 · doi:10.1002/mana.201700302
[10] Evans, L.C.: Partial differential equations. Graduate studies in mathematics, vol 19. American Mathematical Society (2009)
[11] Bénilan, P.; Boccardo, L.; Gallouët, T.; Gariepy, R.; Pierre, M.; Vazquez, JL, An \(L^1\) theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa, 22, 241-273, (1995) · Zbl 0866.35037
[12] Ge, B.; Zhou, Q.; Zu, L., Positive solutions for nonlinear elliptic problems of p-Laplacian type on \(\mathbb{R}^{N}\) without (AR) condition, Nonlinear Anal., 21, 99-109, (2015) · Zbl 1302.35188 · doi:10.1016/j.nonrwa.2014.07.002
[13] Giri, RK; Choudhuri, D., A problem involving the \(p\)-Laplacian operator, Differ. Equ. Appl., 9, 171-181, (2017) · Zbl 1391.35165
[14] Iturriaga, L.; Lorca, S.; Ubilla, P., A quasilinear problem without the Ambrosetti-Rabinowitz type condition, Proc. R. Soc. Edinb. Sect. A, 140, 391-398, (2010) · Zbl 1194.35183 · doi:10.1017/S0308210509000432
[15] Kesavan, S.: Topics in functional analysis and applications. New Age International Pvt. Ltd. (2003) · Zbl 0666.46001
[16] Kristály, A.; Lisei, H.; Varga, C., Multiple solutions for \(p\)-Laplacian type equations, Nonlinear Anal. TMA, 68, 1375-1381, (2008) · Zbl 1136.35034 · doi:10.1016/j.na.2006.12.031
[17] Lan, YY, Existence of solutions to \(p\)-Laplacian equations involving general subcritical growth, Electr. J. Diff. Equ., 2014, 1-9, (2014) · Zbl 1300.35056
[18] Lan, YY; Tang, CL, Existence of solutions to a class of semilinear elliptic equations involving general subcritical growth, Proc. R. Soc. Edinb. Sect. A, 144, 809-818, (2014) · Zbl 1298.35051 · doi:10.1017/S030821051300036X
[19] Liu, S., On superlinear problems without Ambrosetti-Rabinowitz condition, Nonlinear Anal., 73, 788-795, (2010) · Zbl 1192.35074 · doi:10.1016/j.na.2010.04.016
[20] Li, G.; Yang, C., The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of \(p\)-Laplacian type without the Ambrosetti-Rabinowitz condition, Nonlinear Anal. TMA, 72, 4602-4613, (2010) · Zbl 1190.35104 · doi:10.1016/j.na.2010.02.037
[21] Miyagaki, OH; Souto, MA, Superlinear problems without Ambrosetti and Rabinowitz growth condition, J. Diff. Equ., 245, 3628-3638, (2008) · Zbl 1158.35400 · doi:10.1016/j.jde.2008.02.035
[22] Schechter, M.: The use of cerami sequences in critical point theory. Abstract and applied analysis (2007) (Article ID 58948) · Zbl 1156.58006
[23] Sun, MZ, Multiple solutions of a superlinear \(p\)-Laplacian equation without AR-condition, Appl. Anal., 89, 325-336, (2010) · Zbl 1186.35067 · doi:10.1080/00036810903517589
[24] Wang, J.; Tang, CL, Existence and multiplicity of solutions for a class of superlinear \(p\)-Laplacian equations, Bound. Value Probl., 2006, 1-12, (2006) · Zbl 1146.35361
[25] Xiang, M.; Zhang, B., Degenerate Kirchhoff problems involving the fractional \(p\)-Laplacian without the (AR) condition, Complex Var. Elliptic Equ., 60, 1277-1287, (2015) · Zbl 1335.35283 · doi:10.1080/17476933.2015.1005612
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.