×

The group \(\mathrm{Gal}(k_3^{(2)}|k)\) for \(k=\mathbb Q(\sqrt{-3},\sqrt{d})\) of type \((3,3)\). (English) Zbl 1406.11111

Summary: Let \(d>0\) denote the discriminant of a real quadratic field. For all bicyclic biquadratic fields \(k=\mathbb Q(\sqrt{-3},\sqrt{d})\), having a 3-class group of type (3,3), the possibilities for the isomorphism type of the Galois group \(G= \mathrm{Gal}(k_3^{(2)}|k)\) of the second Hilbert 3-class field \(k_3^{(2)}\) of \(k\) are determined. For each coclass graph \(\mathcal G (3,r), r \geq 1,\) in the sense of Eick, Leedham-Green, Newman and O’Brien, the roots \(G\) of even branches of exactly one coclass tree and, in the case of even coclass \(cc(G)=r\), additionally their siblings of depth 1 and defect 1, turn out to be admissible. The principalization type \(\varkappa(k)\) of 3-classes of \(k\) in its four unramified cyclic cubic extensions \(K_1,\dots,K_4\) is given by \((0,0,0,0)\) for \(cc(G)=1\), and by \((0,0,4,3)\) for \(cc(G)\geq 2\). The theory is underpinned by an extensive numerical verification for all 930 fields \(k\) with values of \(d\) in the range \(0<d<5 \cdot 10^4\), which supports the assumption that all admissible vertices \(G\) will actually be realized as Galois groups \(\mathrm{Gal}(k_3^{(2)}|k)\) for certain fields \(k\), asymptotically.

MSC:

11R37 Class field theory
11R29 Class numbers, class groups, discriminants
11R11 Quadratic extensions
11R16 Cubic and quartic extensions
11R20 Other abelian and metabelian extensions
20D30 Series and lattices of subgroups
Full Text: DOI

References:

[1] 1. J. A. Ascione, G. Havas and C. R. Leedham-Green, A computer aided classification of certain groups of prime power order, Bull. Austral. Math. Soc.17 (1977) 257-274; Corrigendum 317-319; Microfiche Supplement, p. 320. · Zbl 0359.20018
[2] 2. A. Azizi, M. Ayadi, M. C. Ismaili and M. Talbi, Sur les unités des extensions cubiques cycliques non ramifiées sur certains sous-corps de \(\mathbb{Q}\)(\sqrt{d},\sqrt{}), Ann. Math. Blaise Pascal16(1) (2009) 71-82. genRefLink(16, ’S1793042116501207BIB002’, ’10.5802 · Zbl 1187.11040
[3] 3. A. Azizi, A. Zekhnini and M. Taous, Coclass of Gal(k2(2)|k) for some fields k=Q(p1p2q,) with 2-class groups of type (2,2,2), to appear in J. Algebra Appl. · Zbl 1335.11091
[4] 4. K. Belabas, Topics in computational algebraic number theory, J. Théor. Nombres Bordeaux16 (2004) 19-63. genRefLink(16, ’S1793042116501207BIB004’, ’10.5802
[5] 5. T. Bembom, The capitulation problem in class field theory, dissertation, Georg-August-Universität Göttingen (2012). · Zbl 1298.11104
[6] 6. H. U. Besche, B. Eick and E. A. O’Brien, A millennium project: Constructing small groups, Int. J. Algebra Comput.12 (2002) 623-644. [Abstract] genRefLink(128, ’S1793042116501207BIB006’, ’000179216500001’); · Zbl 1020.20013
[7] 7. H. U. Besche, B. Eick and E. A. O’Brien, The SmallGroups Library – a library of groups of small order, (2005); an accepted and refereed GAP 4 package, available also in MAGMA.
[8] 8. N. Blackburn, On prime-power groups in which the derived group has two generators, Proc. Cambridge Philos. Soc.53 (1957) 19-27. genRefLink(16, ’S1793042116501207BIB008’, ’10.1017 · Zbl 0077.03202
[9] 9. W. Bosma, J. J. Cannon, C. Fieker and A. Steels (eds.), Handbook of Magma functions (Edition 2.21, Sydney, 2015).
[10] 10. W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput.24 (1997) 235-265. genRefLink(16, ’S1793042116501207BIB010’, ’10.1006
[11] 11. N. Boston, M. R. Bush and F. Hajir, Heuristics for p-class towers of imaginary quadratic fields, to appear in Math. Ann. · Zbl 1420.11137
[12] 12. M. R. Bush and D. C. Mayer, 3-class field towers of exact length 3, J. Number Theory147 (2015) 766-777. genRefLink(16, ’S1793042116501207BIB012’, ’10.1016
[13] 13. M. Daberkow and M. Pohst, On the computation of Hilbert class fields, J. Number Theory69 (1998) 213-230. genRefLink(16, ’S1793042116501207BIB013’, ’10.1006
[14] 14. T. E. Easterfield, A classification of groups of order p6, Ph.D. thesis, University of Cambridge (1940). · Zbl 0024.01703
[15] 15. B. Eick, C. R. Leedham-Green, M. F. Newman and E. A. O’Brien, On the classification of groups of prime-power order by coclass: The 3-groups of coclass 2, J. Algebra Comput.23 (2013) 1243-1288. [Abstract] genRefLink(128, ’S1793042116501207BIB015’, ’000323514700011’); · Zbl 1298.20020
[16] 16. C. Fieker, Computing class fields via the Artin map, Math. Comp.70(235) (2001) 1293-1303. genRefLink(16, ’S1793042116501207BIB016’, ’10.1090 · Zbl 0982.11074
[17] 17. G. Gamble, W. Nickel and E. A. O’Brien, ANU p-Quotient – p-quotient and p-group generation algorithms, (2006); an accepted GAP 4 package, available also in MAGMA.
[18] 18. G. Gras, Extensions abéliennes non ramifiées de degré premier d’un corps quadratique, Bull. Soc. Math. France100 (1972) 177-193. genRefLink(128, ’S1793042116501207BIB018’, ’A1972N001500003’);
[19] 19. P. Hall, The classification of prime-power groups, J. Reine Angew. Math.182 (1940) 130-141. · JFM 66.0081.01
[20] 20. E. Hecke, Vorlesungen über die Theorie der algebraischen Zahlen (Akademische Verlagsgesellschaft, Leipzig, 1923; Chelsea Publishing Company, 1948).
[21] 21. F.-P. Heider und B. Schmithals, Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen, J. Reine Angew. Math.336 (1982) 1-25. genRefLink(128, ’S1793042116501207BIB021’, ’A1982PP28600001’); · Zbl 0505.12016
[22] 22. D. Hilbert, Die Theorie der algebraischen Zahlkörper, Jber. der D.M.-V.4 (1897) 175-546. · JFM 28.0157.05
[23] 23. R. James, The groups of order p6 (p an odd prime), Math. Comp.34(150) (1980) 613-637. genRefLink(128, ’S1793042116501207BIB023’, ’A1980JQ36300017’); · Zbl 0428.20013
[24] 24. T. Komatsu, On unramified cyclic cubic extensions of real quadratic fields, Japan. J. Math.27(2) (2001) 353-384. · Zbl 1001.11043
[25] 25. T. Kubota, Über die Beziehung der Klassenzahlen der Unterkörper des bizyklischen biquadratischen Zahlkörpers, Nagoya Math. J.6 (1953) 119-127. genRefLink(16, ’S1793042116501207BIB025’, ’10.1017 · Zbl 0053.21902
[26] 26. T. Kubota, Über den bizyklischen biquadratischen Zahlkörper, Nagoya Math. J.10 (1956) 65-85. genRefLink(16, ’S1793042116501207BIB026’, ’10.1017 · Zbl 0074.03001
[27] 27. F. Lemmermeyer, Galois action on class groups, J. Algebra264 (2003) 553-564. genRefLink(16, ’S1793042116501207BIB027’, ’10.1016
[28] 28. F. Lemmermeyer, Class groups of dihedral extensions, Math. Nachr.278(6) (2005) 679-691. genRefLink(16, ’S1793042116501207BIB028’, ’10.1002
[29] 29. D. C. Mayer, The second p-class group of a number field, Int. J. Number Theory8(2) (2012) 471-505. [Abstract] genRefLink(128, ’S1793042116501207BIB029’, ’000300681800010’); · Zbl 1261.11070
[30] 30. D. C. Mayer, Transfers of metabelian p-groups, Monatsh. Math.166(3-4) (2012) 467-495. genRefLink(16, ’S1793042116501207BIB030’, ’10.1007
[31] 31. D. C. Mayer, The distribution of second p-class groups on coclass graphs, J. Théor. Nombres Bordeaux25(2) (2013) 401-456; 27th Journées Arithmétiques, Faculty of Math. and Informatics, University of Vilnius, Lithuania, 2011.
[32] 32. D. C. Mayer, Principalization algorithm via class group structure, J. Théor. Nombres Bordeaux26(2) (2014) 415-464. genRefLink(16, ’S1793042116501207BIB032’, ’10.5802
[33] 33. D. C. Mayer, Periodic bifurcations in descendant trees of finite p-groups, Adv. Pure Math.5(4) (2015) 162-195; Special Issue on Group Theory, March 2015.
[34] 34. D. C. Mayer, Index-p abelianization data of p-class tower groups, Adv. Pure Math.5(5) (2015) 286-313; Special Issue on Number Theory and Cryptography, April 2015 (29th Journées Arithmétiques, University of Debrecen, Hungary, 2015.)
[35] 35. D. C. Mayer, Periodic sequences of p-class tower groups, J. Appl. Math. Phys.3 (2015) 746-756 (International Conference on Groups and Algebras 2015, Shanghai, China.)
[36] 36. D. C. Mayer, New number fields with known p-class tower, to appear in Tatra Mountains Math. Pub. (22nd Czech and Slovak International Conference on Number Theory 2015, Liptovský Ján, Slovakia.) (arXiv: 1510.00565 [math.NT] 02 October 2015.)
[37] 37. N. Moser, Unités et nombre de classes d’une extension Galoisienne diédrale de \(\mathbb{Q}\), Abh. Math. Sem. Univ. Hamburg48 (1979) 54-75. genRefLink(16, ’S1793042116501207BIB037’, ’10.1007 · Zbl 0387.12005
[38] 38. H. Reichardt, Arithmetische Theorie der kubischen Zahlkörper als Radikalkörper, Monatsh. Math. Phys.40 (1933) 323-350. genRefLink(16, ’S1793042116501207BIB038’, ’10.1007 · JFM 59.0195.01
[39] 39. A. Scholz, Über die Beziehung der Klassenzahlen quadratischer Körper zueinander, J. Reine Angew. Math.166 (1932) 201-203. · Zbl 0004.05104
[40] 40. A. Scholz, Idealklassen und Einheiten in kubischen Körpern, Monatsh. Math. Phys.40 (1933) 211-222. genRefLink(16, ’S1793042116501207BIB040’, ’10.1007 · Zbl 0007.00301
[41] 41. I. R. Shafarevich, Extensions with prescribed ramification points, Publ. Math. Inst. Hautes Études Sci.18 (1964) 71-95 (in Russian); English translation by J. W. S. Cassels in Amer. Math. Soc. Transl. (2)59 (1966) 128-149.
[42] 42. N. J. A. Sloane, The on-line encyclopedia of integer sequences (OEIS), The OEIS Foundation Inc. (2015); http://oeis.org/.
[43] 43. J.-J. Son and S.-H. Kwon, On the principal ideal theorem, J. Korean Math. Soc.44(4) (2007) 747-756. genRefLink(16, ’S1793042116501207BIB043’, ’10.4134 · Zbl 1126.11065
[44] 44. M. Talbi, Capitulation des 3-classes d’idéaux dans certains corps de nombres, Thèse de doctorat, Université Mohammed Premier, Oujda, Morocco (2008).
[45] 45. O. Taussky, A remark concerning Hilbert’s Theorem 94, J. Reine Angew. Math.239/240 (1970) 435-438. genRefLink(128, ’S1793042116501207BIB045’, ’A1969E978000036’); · Zbl 0186.09002
[46] 46. The GAP group, GAP – groups, algorithms, and programming – a system for computational discrete algebra, version 4.7.8, Aachen, Braunschweig, Fort Collins, St. Andrews (2015); http://www.gap-system.org.
[47] 47. The MAGMA Group, MAGMA computational algebra system, version 2.21-6, Sydney (2015); http://magma.maths.usyd.edu.au.
[48] 48. The PARI Group, PARI/GP, version 2.7.4, Bordeaux (2015); http://pari.math.u-bordeaux.fr.
[49] 49. E. Yoshida, On the 3-class field tower of some biquadratic fields, Acta Arith.107(4) (2003) 327-336. genRefLink(16, ’S1793042116501207BIB049’, ’10.4064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.