×

Optimization methods for regularization-based ill-posed problems: a survey and a multi-objective framework. (English) Zbl 1405.94024

Summary: Ill-posed problems are widely existed in signal processing. In this paper, we review popular regularization models such as truncated singular value decomposition regularization, iterative regularization, variational regularization. Meanwhile, we also retrospect popular optimization approaches and regularization parameter choice methods. In fact, the regularization problem is inherently a multi-objective problem. The traditional methods usually combine the fidelity term and the regularization term into a single-objective with regularization parameters, which are difficult to tune. Therefore, we propose a multi-objective framework for ill-posed problems, which can handle complex features of problem such as non-convexity, discontinuity. In this framework, the fidelity term and regularization term are optimized simultaneously to gain more insights into the ill-posed problems. A case study on signal recovery shows the effectiveness of the multi-objective framework for ill-posed problems.

MSC:

94A12 Signal theory (characterization, reconstruction, filtering, etc.)
90C29 Multi-objective and goal programming
90C59 Approximation methods and heuristics in mathematical programming
Full Text: DOI

References:

[1] Hadamard J. Sur les Problemes aux Derivees Partielles et Leur Signification Physique. Princeton University Bulletin, 1902, 13: 49-52
[2] Kabanikhin S I. Inverse and Ill-Posed Problems: Theory and Applications. Berlin: Water De Gruyter, 2011
[3] Zhang B Y, Xu D H, Liu T W. Stabilized algorithms for ill-posed problems in signal processing. In: Proceedings of the IEEE International Conferences on Info-tech and Info-net. 2001, 1: 375-380
[4] Scherzer O. Handbook of Mathematical Methods in Imaging. Springer Science & Business Media, 2011 · Zbl 1259.00006
[5] Groetsch C W. Inverse problems in the mathematical sciences. Mathematics of Computation, 1993, 63(5): 799-811 · Zbl 0779.45001
[6] Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 1992, 60(1): 259-268 · Zbl 0780.49028
[7] Tikhonov A N. Solution of incorrectly formulated problems and the regularization method. Soviet Math, 1963, 4: 1035-1038 · Zbl 0141.11001
[8] Tikhonov A N, Arsenin V I. Solutions of Ill-posed Problems. Washington, DC: V. H. Winston & Sons, 1977 · Zbl 0354.65028
[9] Landweber L. An iteration formula for Fredholm integral equations of the first kind. American Journal of Mathematics, 1951, 73(3): 615-624 · Zbl 0043.10602
[10] Hestenes M R, Stiefel E. Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards, 1952, 49(6): 409-436 · Zbl 0048.09901
[11] Vogel, C. R., Computational Methods for Inverse Problems, 23 (2002) · Zbl 1008.65103
[12] Hansen P C. The truncated SVD as a method for regularization. Bit Numerical Mathematics, 1987, 27(4): 534-553 · Zbl 0633.65041
[13] Honerkamp J, Weese J. Tikhonovs regularization method for ill-posed problems. Continuum Mechanics and Thermodynamics, 1990, 2(1): 17-30 · Zbl 0825.76669
[14] Zhang X Q, Burger M, Bresson X, Osher S. Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM Journal on Imaging Sciences, 2010, 3(3): 253-276 · Zbl 1191.94030
[15] Deb K. Multi-Objective Optimization Using Evolutionary Algorithms. New York: John Wiley & Sons, 2001, 16 · Zbl 0970.90091
[16] Fonseca CM, Fleming P J. An overview of evolutionary algorithms in multiobjective optimization. Evolutionary Computation, 1995, 3(1): 1-16
[17] Coello C A C, Van Veldhuizen D A, Lamont G B. Evolutionary Algorithms for Solving Multi-objective Problems. New York: Kluwer Academic, 2002 · Zbl 1130.90002
[18] Tan, K. C.; Khor, E. F.; Lee, T. H., Multiobjective Evolutionary Algorithms and Applications (2005) · Zbl 1101.68971
[19] Knowles J, Corne D, Deb K. Multiobjective Problem Solving from Nature: from Concepts to Applications. Springer Science & Business Media, 2008 · Zbl 1162.90003
[20] Raquel, C.; Yao, X., Dynamic multi-objective optimization: a survey of the state-of-the-art, 85-106 (2013)
[21] Lücken C V, Barán B, Brizuela C. A survey on multi-objective evolutionary algorithms for many-objective problems. Computational Optimization and Applications, 2014, 58(3): 707-756 · Zbl 1334.90219
[22] Hwang C L, Masud A S M. Multiple Objective Decision Making- Methods and Applications. Springer Science & Business Media, 1979, 164 · Zbl 0397.90001
[23] Girosi F, Jones M B, Poggio T. Regularization theory and neural networks architectures. Neural Computation, 1995, 7(2): 219-269
[24] Belge M, Kilmer M E, Miller E L. Efficient determination of multiple regularization parameters in a generalized L-curve framework. Inverse Problems, 2002, 18(4): 1161 · Zbl 1018.65073
[25] Hansen P C. Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion. American Mathematical Monthly, 1997, 4(5): 491 · Zbl 0890.65037
[26] Eriksson P, Jiménez C, Buehler S A. Qpack, a general tool for instrument simulation and retrieval work. Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 91(1): 47-64
[27] Giusti E. Minimal Surfaces and Functions of Bounded Variation. Springer Science & Business Media, 1984, 80 · Zbl 0545.49018
[28] Catté F, Coll T. Image selective smoothing and edge detection by nonlinear diffusion. SIAM Journal on Numerical Analysis, 1992, 29(1): 182-193 · Zbl 0746.65091
[29] Björck, A., Numerical Methods for Least Squares Problems (1996) · Zbl 0847.65023
[30] Groetsch C W. The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind. Pitman Advanced Publishing Program, 1984 · Zbl 0545.65034
[31] Hanson R J. A numerical method for solving Fredholm integral equations of the first kind using singular values. SIAM Journal on Numerical Analysis, 1971, 8(3): 616-622 · Zbl 0199.50803
[32] Stewart G W. Rank degeneracy. SIAM Journal on Scientific and Statistical Computing, 1984, 5(2): 403-413 · Zbl 0579.65034
[33] Hansen P C, Sekii T, Shibahashi H. The modified truncated SVD method for regularization in general form. SIAM Journal on Scientific and Statistical Computing, 1992, 13(5): 1142-1150 · Zbl 0760.65044
[34] Van Loan C F. Generalizing the singular value decomposition. SIAM Journal on Numerical Analysis, 1976, 13(1): 76-83 · Zbl 0338.65022
[35] Hansen P C. Regularization, GSVD and truncated GSVD. BIT Numerical Mathematics, 1989, 29(3): 491-504 · Zbl 0682.65021
[36] Paige C C. Computing the generalized singular value decomposition. SIAM Journal on Scientific and Statistical Computing, 1986, 7(4): 1126-1146 · Zbl 0621.65030
[37] Morigi S, Reichel L, Sgallari F. A truncated projected SVD method for linear discrete ill-posed problems. Numerical Algorithms, 2006, 43(3): 197-213 · Zbl 1114.65039
[38] Fernando, K. V.; Hammarling, S., A product induced singular value decomposition (ΠSVD) for two matrices and balanced realization, 128-140 (1988) · Zbl 0667.65034
[39] Zha H Y. The restricted singular value decomposition of matrix triplets. SIAM Journal on Matrix Analysis and Applications, 1991, 12(1): 172-194 · Zbl 0722.15011
[40] De Moor B, Golub G H. The restricted singular value decomposition: properties and applications. SIAM Journal on Matrix Analysis and Applications, 1991, 12(3): 401-425 · Zbl 0738.15006
[41] De Moor B, Zha H Y. A tree of generalizations of the ordinary singular value decomposition. Linear Algebra and Its Applications, 1991, 147: 469-500 · Zbl 0715.15006
[42] Moor, B., Generalizations of the OSVD: structure, properties and applications, 83-98 (1991)
[43] Noschese S, Reichel L. A modified TSVD method for discrete illposed problems. Numerical Linear Algebra with Applications, (in press) · Zbl 1340.65070
[44] Dykes L, Noschese S, Reichel L. Rescaling the GSVD with application to ill-posed problems. Numerical Algorithms, 2015, 68(3): 531-545 · Zbl 1314.65058
[45] Edo L, Franco W, Martinsson P G, Rokhlin V, Tygert M. Randomized algorithms for the low-rank approximation of matrices. Proceedings of the National Academy of Sciences, 2007, 104(51): 20167-20172 · Zbl 1215.65080
[46] Woolfe F, Liberty E, Rokhlin V, Tygert M. A fast randomized algorithm for the approximation of matrices. Applied & Computational Harmonic Analysis, 2008, 25(3): 335-366 · Zbl 1155.65035
[47] Sifuentes J, Gimbutas Z, Greengard L. Randomized methods for rankdeficient linear systems. Electronic Transactions on Numerical Analysis, 2015, 44: 177-188 · Zbl 1312.65057
[48] Liu Y G, Lei Y J, Li C G, Xu W Z, Pu Y F. A random algorithm for low-rank decomposition of large-scale matrices with missing entries. IEEE Transactions on Image Processing, 2015, 24(11): 4502-4511 · Zbl 1408.94414
[49] Sekii T. Two-dimensional inversion for solar internal rotation. Publications of the Astronomical Society of Japan, 1991, 43: 381-411
[50] Scales, J. A., Uncertainties in seismic inverse calculations, 79-97 (1996), Berlin
[51] Lawless J F, Wang P. A simulation study of ridge and other regression estimators. Communications in Statistics-Theory and Methods, 1976, 5(4): 307-323 · Zbl 0336.62056
[52] Dempster A P, Schatzoff M, Wermuth N. A simulation study of alternatives to ordinary least squares. Journal of the American Statistical Association, 1977, 72(357): 77-91 · Zbl 0366.62086
[53] Hansen P C, O’Leary D P. The use of the L-curve in the regularization of discrete ill-posed problems. SIAM Journal on Scientific Computing, 1993, 14(6): 1487-1503 · Zbl 0789.65030
[54] Hansen P C. Analysis of discrete ill-posed problems by means of the L-curve. SIAM Review, 1992, 34(4): 561-580 · Zbl 0770.65026
[55] Xu P L. Truncated SVD methods for discrete linear ill-posed problems. Geophysical Journal International, 1998, 135(2): 505-514
[56] Wu, Z. M.; Bian, S. F.; Xiang, C. B.; Tong, Y. D., A new method for TSVD regularization truncated parameter selection (2013) · Zbl 1296.65063
[57] Chicco, D.; Masseroli, M., A discrete optimization approach for SVD best truncation choice based on ROC curves, 1-4 (2013)
[58] Golub G H, Heath M, Wahba G. Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics, 1979, 21(2): 215-223 · Zbl 0461.62059
[59] Jbilou K, Reichel L, Sadok H. Vector extrapolation enhanced TSVD for linear discrete ill-posed problems. Numerical Algorithms, 2009, 51(2): 195-208 · Zbl 1167.65019
[60] Bouhamidi A, Jbilou K, Reichel L, Sadok H, Wang Z. Vector extrapolation applied to truncated singular value decomposition and truncated iteration. Journal of Engineering Mathematics, 2015, 93(1): 99-112 · Zbl 1360.65109
[61] Vogel, C. R., Computational Methods for Inverse Problems (2002) · Zbl 1008.65103
[62] Doicu A, Trautmann T, Schreier F. Numerical Regularization for Atmospheric Inverse Problems. Springer Science & Business Media, 2010 · Zbl 1213.86006
[63] Bakushinsky A B, Goncharsky A V. Iterative Methods for the Solution of Incorrect Problems. Moscow: Nauka, 1989 · Zbl 0676.65050
[64] Rieder A. Keine Probleme mit Inversen Problemen: Eine Einführung in ihre stabile Lösung. Berlin: Springer-Verlag, 2013
[65] Nemirovskiy A S, Polyak B T. Iterative methods for solving linear illposed problems under precise information. Engineering Cybernetics, 1984, 22(4): 50-56 · Zbl 0825.65041
[66] Brakhage H. On ill-posed problems and the method of conjugate gradients. Inverse and Ill-posed Problems, 1987, 4: 165-175 · Zbl 0642.65042
[67] Hanke M. Accelerated Landweber iterations for the solution of illposed equations. Numerische Mathematik, 1991, 60(1): 341-373 · Zbl 0745.65038
[68] Barzilai J, Borwein J M. Two-point step size gradient methods. IMA Journal of Numerical Analysis, 1988, 8(1): 141-148 · Zbl 0638.65055
[69] Axelsson O. Iterative Solution Methods. Cambridge: Cambridge University Press, 1996 · Zbl 0845.65011
[70] Van der Sluis A, Van der Vorst H A. The rate of convergence of conjugate gradients. Numerische Mathematik, 1986, 48(5): 543-560 · Zbl 0596.65015
[71] Scales J A, Gersztenkorn A. Robust methods in inverse theory. Inverse Problems, 1988, 4(4): 1071-1091 · Zbl 0672.65019
[72] Björck Å, Eldén L. Methods in numerical algebra for ill-posed problems. Technical Report LiTH-MAT-R-33-1979. 1979
[73] Trefethen, L. N.; Bau, D., Numerical Linear Algebra (1997) · Zbl 0874.65013
[74] Calvetti D, Lewis B, Reichel L. On the regularizing properties of the GMRES method. Numerische Mathematik, 2002, 91(4): 605-625 · Zbl 1022.65044
[75] Calvetti D, Lewis B, Reichel L. Alternating Krylov subspace image restoration methods. Journal of Computational and Applied Mathematics, 2012, 236(8): 2049-2062 · Zbl 1251.65091
[76] Brianzi P, Favati P, Menchi O, Romani F. A framework for studying the regularizing properties of Krylov subspace methods. Inverse Problems, 2006, 22(3): 1007-1021 · Zbl 1094.65023
[77] Sonneveld P, Van Gijzen M B. IDR(s): a family of simple and fast algorithms for solving large nonsymmetric systems of linear equations. SIAM Journal on Scientific Computing, 2008, 31(2): 1035-1062 · Zbl 1190.65053
[78] Fong D C L, Saunders M. LSMR: an iterative algorithm for sparse least-squares problems. SIAM Journal on Scientific Computing, 2011, 33(5): 2950-2971 · Zbl 1232.65052
[79] Zhao, C.; Huang, T. Z.; Zhao, X. L.; Deng, L. J., Two new efficient iterative regularization methods for image restoration problems (2013) · Zbl 1371.68315
[80] Perez A, Gonzalez R C. An iterative thresholding algorithm for image segmentation. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1987, 9(6): 742-751
[81] Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202 · Zbl 1175.94009
[82] Bioucas-Dias, J. M.; Figueiredo, M. A T., Two-step algorithms for linear inverse problems with non-quadratic regularization, 105-108 (2007)
[83] Bioucas-Dias J M, Figueiredo M A T. A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Transactions on Image Processing. 2007, 16(12): 2992-3004
[84] Bayram I, Selesnick I W. A subband adaptive iterative shrinkage/ thresholding algorithm. IEEE Transactions on Signal Processing, 2010, 58(3): 1131-1143 · Zbl 1392.94092
[85] Yamagishi M, Yamada I. Over-relaxation of the fast iterative shrinkage-thresholding algorithm with variable stepsize. Inverse Problems, 2011, 27(10): 105008-105022 · Zbl 1254.90173
[86] Bhotto M Z A, Ahmad M O, Swamy M N S. An improved fast iterative shrinkage thresholding algorithm for image deblurring. SIAM Journal on Imaging Sciences, 2015, 8(3): 1640-1657 · Zbl 1341.94003
[87] Zhang Y D, Dong Z C, Phillips P, Wang S H, Ji G L, Yang J Q. Exponential wavelet iterative shrinkage thresholding algorithm for compressed sensing magnetic resonance imaging. Information Sciences, 2015, 322: 115-132
[88] Zhang Y D, Wang S H, Ji G L, Dong Z C. Exponential wavelet iterative shrinkage thresholding algorithm with random shift for compressed sensing magnetic resonance imaging. IEEJ Transactions on Electrical and Electronic Engineering, 2015, 10(1): 116-117
[89] Wu G M, Luo S Q. Adaptive fixed-point iterative shrinkage/ thresholding algorithm for MR imaging reconstruction using compressed sensing. Magnetic Resonance Imaging, 2014, 32(4): 372-378
[90] Fang E X, Wang J J, Hu D F, Zhang J Y, Zou W, Zhou Y. Adaptive monotone fast iterative shrinkage thresholding algorithm for fluorescence molecular tomography. IET Science Measurement Technology, 2015, 9(5): 587-595
[91] Zuo, W. M.; Meng, D. Y.; Zhang, L.; Feng, X. C.; Zhang, D., A generalized iterated shrinkage algorithm for non-convex sparse coding, 217-224 (2013)
[92] Krishnan, D.; Fergus, R., Fast image deconvolution using hyperlaplacian priors, 1033-1041 (2009)
[93] Chartrand, R.; Yin, W., Iteratively reweighted algorithms for compressive sensing, 3869-3872 (2008)
[94] She Y Y. An iterative algorithm for fitting nonconvex penalized generalized linear models with grouped predictors. Computational Statistics & Data Analysis, 2012, 56(10): 2976-2990 · Zbl 1255.62209
[95] Gong, P. H.; Zhang, C. S.; Lu, Z. S.; Huang, J. Z.; Ye, J. P., A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems, 37-45 (2013)
[96] Bredies K, Lorenz D A. Linear convergence of iterative softthresholding. Journal of Fourier Analysis and Applications, 2008, 14(5-6): 813-837 · Zbl 1175.65061
[97] Kowalski, M., Thresholding rules and iterative shrinkage/thresholding algorithm: a convergence study, 4151-4155 (2014)
[98] Chambolle A, Dossal C. On the convergence of the iterates of the “fast iterative shrinkage/thresholding algorithm”. Journal of Optimization Theory & Applications, 2015, 166(3): 968-982 · Zbl 1371.65047
[99] Johnstone, P. R.; Moulin, P., Local and global convergence of an inertial version of forward-backward splitting, 1970-1978 (2014)
[100] Morozov V A. On the solution of functional equations by the method of regularization. Soviet Mathematics Doklady, 1966, 7(11): 414-417 · Zbl 0187.12203
[101] Vainikko G M. The discrepancy principle for a class of regularization methods. USSR Computational Mathematics and Mathematical Physics, 1982, 22(3): 1-19 · Zbl 0528.65033
[102] Vainikko G M. The critical level of discrepancy in regularization methods. USSR Computational Mathematics and Mathematical Physics, 1983, 23(6): 1-9 · Zbl 0559.65038
[103] Plato R. On the discrepancy principle for iterative and parametric methods to solve linear ill-posed equations. Numerische Mathematik, 1996, 75(1): 99-120 · Zbl 0864.65034
[104] Borges L S, Bazán F S V, Cunha M C C. Automatic stopping rule for iterative methods in discrete ill-posed problems. Computational & Applied Mathematics, 2015, 34(3): 1175-1197 · Zbl 1337.65034
[105] Dziwoki, G.; Izydorczyk, J., Stopping criteria analysis of the OMP algorithm for sparse channels estimation, 250-259 (2015)
[106] Favati P, Lotti G, Menchi O, Romani F. Stopping rules for iterative methods in nonnegatively constrained deconvolution. Applied Numerical Mathematics, 2014, 75: 154-166 · Zbl 1302.65286
[107] Engl H W, Hanke M, Neubauer A. Regularization of Inverse Problems. Springer Science & Business Media, 1996 · Zbl 0859.65054
[108] Amster, P., Iterative Methods, 53-82 (2014)
[109] Waseem M. On some iterative methods for solving system of nonlinear equations. Dissertation for the Doctoral Degree. Islamabad: COMSATS Institute of Information Technology, 2012
[110] Burger, M.; Osher, S., A guide to the TV zoo, 1-70 (2013) · Zbl 1342.94014
[111] Tikhonov A N. Regularization of incorrectly posed problems. Soviet Mathematics Doklady, 1963, 4(1): 1624-1627 · Zbl 0183.11601
[112] Nikolova M. Analysis of the recovery of edges in images and signals by minimizing nonconvex regularized least-squares. Multiscale Modeling & Simulation, 2005, 4(3): 960-991 · Zbl 1091.94007
[113] Burger M, Osher S. Convergence rates of convex variational regularization. Inverse Problems, 2004, 20(5): 1411-1421 · Zbl 1068.65085
[114] Hofmann B, Kaltenbacher B, Pöschl C, Scherzer O. A convergence rates result for Tikhonov regularization in Banach spaces with nonsmooth operators. Inverse Problems, 2007, 23(3): 987-1010 · Zbl 1131.65046
[115] Resmerita E. Regularization of ill-posed problems in Banach spaces:convergence rates. Inverse Problems, 2005, 21(4): 1303-1314 · Zbl 1082.65055
[116] Resmerita E, Scherzer O. Error estimates for non-quadratic regularization and the relation to enhancement. Inverse Problems, 2006, 22(3): 801-814 · Zbl 1103.65062
[117] Engl H W. Discrepancy principles for Tikhonov regularization of illposed problems leading to optimal convergence rates. Journal of Optimization Theory and Applications, 1987, 52(2): 209-215 · Zbl 0586.65045
[118] Gfrerer H. An a posteriori parameter choice for ordinary and iterated Tikhonov regularization of ill-posed problems leading to optimal convergence rates. Mathematics of Computation, 1987, 49(180): 507-522 · Zbl 0631.65056
[119] Natterer F. Error bounds for Tikhonov regularization in Hilbert scales. Applicable Analysis, 1984, 18(1-2): 29-37 · Zbl 0504.65031
[120] Neubauer A. An a posteriori parameter choice for Tikhonov regularization in the presence of modeling error. Applied Numerical Mathematics, 1988, 4(6): 507-519 · Zbl 0698.65032
[121] Engl H W, Kunisch K, Neubauer A. Convergence rates for Tikhonov regularisation of non-linear ill-posed problems. Inverse Problems, 1989, 5(4): 523-540 · Zbl 0695.65037
[122] Scherzer O, Engl H W, Kunisch K. Optimal a posteriori parameter choice for Tikhonov regularization for solving nonlinear ill-posed problems. SIAM Journal on Numerical Analysis, 1993, 30(6): 1796-1838 · Zbl 0799.65060
[123] Varah J M. On the numerical solution of ill-conditioned linear systems with applications to ill-posed problems. SIAM Journal on Numerical Analysis, 1973, 10(2): 257-267 · Zbl 0261.65034
[124] Vinod H D, Ullah A. Recent Advances in Regression Methods. Danbury: Marcel Dekker Incorporated, 1981 · Zbl 0511.62084
[125] O’Sullivan F. A statistical perspective on ill-posed inverse problems. Statistical Science, 1986, 1(4): 502-518 · Zbl 0625.62110
[126] Grafarend, EW; Schaffrin, B., Ausgleichungsrechnung in linearen modellen (1993)
[127] Rodgers C D. Inverse Methods for Atmospheric Sounding: Theory and Practice. Singapore: World Scientific, 2000 · Zbl 0962.86002
[128] Ceccherini S. Analytical determination of the regularization parameter in the retrieval of atmospheric vertical profiles. Optics Letters, 2005, 30(19): 2554-2556
[129] Mallows C L. Some comments on Cp. Technometrics, 1973, 15(4): 661-675 · Zbl 0269.62061
[130] Rice J. Choice of smoothing parameter in deconvolution problems. Contemporary Mathematics, 1986, 59: 137-151 · Zbl 0623.62032
[131] Hanke M, Raus T. A general heuristic for choosing the regularization parameter in ill-posed problems. SIAM Journal on Scientific Computing, 1996, 17(4): 956-972 · Zbl 0859.65051
[132] Wu L M. A parameter choice method for Tikhonov regularization. Electronic Transactions on Numerical Analysis, 2003, 16: 107-128 · Zbl 1065.65059
[133] Gao, W.; Yu, K. P., A new method for determining the Tikhonov regularization parameter of load identification (2015)
[134] Ito K, Jin B, Takeuchi T. Multi-parameter Tikhonov regularizationan augmented approach. Chinese Annals of Mathematics, Series B, 2014, 35(03): 383-398 · Zbl 1309.65065
[135] Jin B, Lorenz D A. Heuristic parameter-choice rules for convex variational regularization based on error estimates. SIAM Journal on Numerical Analysis, 2010, 48(3): 1208-1229 · Zbl 1215.65100
[136] Pazos F, Bhaya A. Adaptive choice of the Tikhonov regularization parameter to solve ill-posed linear algebraic equations via Liapunov optimizing control. Journal of Computational and Applied Mathematics, 2015, 279: 123-132 · Zbl 1306.65194
[137] Hämarik U, Palm R, Raus T. A family of rules for parameter choice in Tikhonov regularization of ill-posed problems with inexact noise level. Journal of Computational and Applied Mathematics, 2012, 236(8): 2146-2157 · Zbl 1247.65071
[138] Reichel L, Rodriguez G. Old and new parameter choice rules for discrete ill-posed problems. Numerical Algorithms, 2013, 63(1): 65-87 · Zbl 1267.65045
[139] Kryanev A V. An iterative method for solving incorrectly posed problems. USSR Computational Mathematics and Mathematical Physics, 1974, 14(1): 24-35 · Zbl 0299.65053
[140] King J T, Chillingworth D. Approximation of generalized inverses by iterated regularization. Numerical Functional Analysis & Optimization, 1979, 1(5): 499-513 · Zbl 0446.65026
[141] Fakeev A G. A class of iterative processes for solving degenerate systems of linear algebraic equations. USSR Computational Mathematics and Mathematical Physics, 1981, 21(3): 15-22 · Zbl 0501.65012
[142] Brill, M.; Schock, E., Iterative solution of ill-posed problems: a survey (1987)
[143] Hanke M, Groetsch CW. Nonstationary iterated Tikhonov regularization. Journal of Optimization Theory and Applications, 1998, 98(1): 37-53 · Zbl 0910.47005
[144] Lampe J, Reichel L, Voss H. Large-scale Tikhonov regularization via reduction by orthogonal projection. Linear Algebra and Its Applications, 2012, 436(8): 2845-2865 · Zbl 1241.65044
[145] Reichel L, Yu X B. Tikhonov regularization via flexible Arnoldi reduction. BIT Numerical Mathematics, 2015, 55(4): 1145-1168 · Zbl 1332.65058
[146] Huang G, Reichel L, Yin F. Projected nonstationary iterated Tikhonov regularization. BIT Numerical Mathematics, 2016, 56(2): 467-487 · Zbl 1341.65017
[147] Ambrosio L, Fusco N, Pallara D. Functions of Bounded Variation and Free Discontinuity Problems. Oxford: Oxford University Press, 2000 · Zbl 0957.49001
[148] Acar R, Vogel C R. Analysis of bounded variation penalty methods for ill-posed problems. Inverse Problems, 1997, 10(6): 1217-1229 · Zbl 0809.35151
[149] Hunt B R. The application of constrained least squares estimation to image restoration by digital computer. IEEE Transactions on Computers, 1973, 100(9): 805-812
[150] Demoment G. Image reconstruction and restoration: overview of common estimation structures and problems. IEEE Transactions on Acoustics, Speech and Signal Processing, 1989, 37(12): 2024-2036
[151] Katsaggelos A K. Iterative image restoration algorithms. Optical Engineering, 1989, 28(7): 735-748
[152] Katsaggelos A K, Biemond J, Schafer R W, Mersereau R M. A regularized iterative image restoration algorithm. IEEE Transactions on Signal Processing, 1991, 39(4): 914-929
[153] Babacan S D, Molina R, Katsaggelos A K. Parameter estimation in TV image restoration using variational distribution approximation. IEEE Transactions on Image Processing, 2008, 17(3): 326-339
[154] Wen Y W, Chan R H. Parameter selection for total-variation-based image restoration using discrepancy principle. IEEE Transactions on Image Processing, 2012, 21(4): 1770-1781 · Zbl 1373.94440
[155] Chen, A.; Huo, B. M.; Wen, CW, Adaptive regularization for color image restoration using discrepancy principle, 1-6 (2013)
[156] Lin Y, Wohlberg B, Guo H. UPRE method for total variation parameter selection. Signal Processing, 2010, 90(8): 2546-2551 · Zbl 1194.94109
[157] Stein C M. Estimation of the mean of a multivariate normal distribution. Annals of Statistics, 1981, 9(6): 1135-1151 · Zbl 0476.62035
[158] Ramani S, Blu T, Unser M. Monte-Carlo SURE: a black-box optimization of regularization parameters for general denoising algorithms. IEEE Transactions on Image Processing, 2008, 17(9): 1540-1554
[159] Palsson, F.; Sveinsson, J. R.; Ulfarsson, M. O.; Benediktsson, J. A., SAR image denoising using total variation based regularization with surebased optimization of regularization parameter, 2160-2163 (2012)
[160] Liao H Y, Li F, Ng MK. Selection of regularization parameter in total variation image restoration. Journal of the Optical Society of America A, 2009, 26(11): 2311-2320
[161] Bertalmío M, Caselles V, Rougé B, Solé A. TV based image restoration with local constraints. Journal of Scientific Computing, 2003, 19(1-3): 95-122 · Zbl 1034.49036
[162] Almansa A, Ballester C, Caselles V, Haro G. A TV based restoration model with local constraints. Journal of Scientific Computing, 2008, 34(3): 209-236 · Zbl 1218.94007
[163] Vogel C R, Oman ME. Iterative methods for total variation denoising. SIAM Journal on Scientific Computing, 1997, 17(1): 227-238 · Zbl 0847.65083
[164] Chan T F, Golub G H, Mulet P. A nonlinear primal-dual method for total variation-based image restoration. Lecture Notes in Control & Information Sciences, 1995, 20(6): 1964-1977 · Zbl 0929.68118
[165] Chambolle A. An algorithm for total variation minimization and applications. Journal of Mathematical Imaging & Vision, 2004, 20(1-2): 89-97 · Zbl 1366.94048
[166] Huang Y M, Ng M K, Wen Y W. A fast total variation minimization method for image restoration. SIAM Journal on Multiscale Modeling & Simulation, 2008, 7(2): 774-795 · Zbl 1172.94316
[167] Bresson X, Chan T F. Fast dual minimization of the vectorial total variation norm and applications to color image processing. Inverse Problems & Imaging, 2008, 2(4): 455-484 · Zbl 1188.68337
[168] Ng M K, Qi L Q, Yang Y F, Huang Y M. On semismooth Newton’s methods for total variation minimization. Journal of Mathematical Imaging & Vision, 2007, 27(3): 265-276
[169] Zhu, M. Q.; Chan, T. F., An efficient primal-dual hybrid gradient algorithm for total variation image restoration, 8-34 (2008)
[170] Zhu M Q, Wright S J, Chan T F. Duality-based algorithms for total-variation-regularized image restoration. Computational Optimization and Applications, 2010, 47(3): 377-400 · Zbl 1208.90165
[171] Krishnan D, Lin P, Yip A M. A primal-dual active-set method for non-negativity constrained total variation deblurring problems. IEEE Transactions on Image Processing, 2007, 16(11): 2766-2777
[172] Krishnan D, Pham Q V, Yip A M. A primal-dual active-set algorithm for bilaterally constrained total variation deblurring and piecewise constant Mumford-Shah segmentation problems. Advances in Computational Mathematics, 2009, 31(1-3): 237-266 · Zbl 1169.94005
[173] Osher S, Burger M, Goldfarb D, Xu J J, Yin WT. An iterative regularization method for total variation-based image restoration. Multiscale Modeling & Simulation, 2005, 4(2): 460-489 · Zbl 1090.94003
[174] Goldstein T, Osher S. The split Bregman method for l1-regularized problems. SIAM Journal on Imaging Sciences, 2009, 2(2): 323-343 · Zbl 1177.65088
[175] Glowinski, R.; Tallec, P., Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics (1989) · Zbl 0698.73001
[176] Wu C C, Tai X C. Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models. SIAM Journal on Imaging Sciences, 2010, 3(3): 300-339 · Zbl 1206.90245
[177] Darbon J, Sigelle M. Image restoration with discrete constrained total variation part I: fast and exact optimization. Journal of Mathematical Imaging & Vision, 2006, 26(3): 261-276 · Zbl 1478.94026
[178] Duan Y P, Tai X C. Domain decomposition methods with graph cuts algorithms for total variation minimization. Advances in Computational Mathematics, 2012, 36(2): 175-199 · Zbl 1242.65123
[179] Fu H Y, Ng M K, Nikolova M, Barlow J L. Efficient minimization methods of mixed l2-l1 and l1-l1 norms for image restoration. SIAM Journal on Scientific Computing, 2005, 27(6): 1881-1902 · Zbl 1103.65044
[180] Goldfarb D, Yin W T. Second-order cone programming methods for total variation-based image restoration. SIAM Journal on Scientific Computing, 2005, 27(2): 622-645 · Zbl 1094.68108
[181] Oliveira J P, Bioucas-Dias J M, Figueiredo M A T. Adaptive total variation image deblurring: a majorization-minimization approach. Signal Processing, 2009, 89(9): 1683-1693 · Zbl 1178.94029
[182] Bioucas-Dias, J. M.; Figueiredo, M. A T.; Oliveira, J. P., Total variationbased image deconvolution: a majorization-minimization approach, 861-864 (2006)
[183] Chan T F, Esedoglu S. Aspects of total variation regularized l1 function approximation. SIAM Journal on Applied Mathematics, 2004, 65(5): 1817-1837 · Zbl 1096.94004
[184] He L, Burger M, Osher S. Iterative total variation regularization with non-quadratic fidelity. Journal of Mathematical Imaging & Vision, 2006, 26(1-2): 167-184 · Zbl 1478.94048
[185] Jonsson E, Huang S C, Chan T F. Total variation regularization in positron emission tomography. CAM Report. 1998
[186] Panin V Y, Zeng G L, Gullberg G T. Total variation regulated EM algorithm. IEEE Transactions on Nuclear Science, 1999, 46(6): 2202-2210
[187] Le T, Chartrand R, Asaki T J. A variational approach to reconstructing images corrupted by Poisson noise. Journal of Mathematical Imaging & Vision, 2007, 27(3): 257-263
[188] Rudin, L.; Lions, P. L.; Osher, S., Multiplicative denoising and deblurring: theory and algorithms, 103-119 (2003), New York
[189] Huang Y M, Ng M K, Wen Y W. A new total variation method for multiplicative noise removal. SIAM Journal on Imaging Sciences, 2009, 2(1): 20-40 · Zbl 1187.68655
[190] Bonesky T, Kazimierski K S, Maass P, Schöpfer F, Schuster T. Minimization of Tikhonov functionals in Banach spaces. Abstract & Applied Analysis, 2008, 2008(1): 1563-1569 · Zbl 1357.49135
[191] Meyer Y. Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, University Lecture Series. Rhode Island: American Mathematical Society, 2002
[192] Blomgren P, Chen T F. Color TV: total variation methods for restoration of vector valued images. IEEE Transactions on Image Processing, 1970, 7(3): 304-309
[193] Setzer, S.; Steidl, G.; Popilka, B.; Burgeth, B., Variational methods for denoising matrix fields, 341-360 (2009), Berlin · Zbl 1171.68813
[194] Esedoglu S, Osher S. Decomposition of images by the anisotropic Rudin-Osher-Fatemi model. Communications on Pure and Applied Mathematics, 2004, 57(12): 1609-1626 · Zbl 1083.49029
[195] Shi, Y. Y.; Chang, Q. S., Efficient algorithm for isotropic and anisotropic total variation deblurring and denoising (2013) · Zbl 1266.65039
[196] Marquina A, Osher S. Explicit algorithms for a new time dependent model based on level set motion for nonlinear deblurring and noise removal. SIAM Journal on Scientific Computing, 2000, 22(2): 387-405 · Zbl 0969.65081
[197] Chan T F, Marquina A, Mulet P. High-order total variation-based image restoration. SIAM Journal on Scientific Computing, 2000, 22(2): 503-516 · Zbl 0968.68175
[198] Gilboa G, Osher S. Nonlocal operators with applications to image processing. SIAM Journal on Multiscale Modeling & Simulation, 2008, 7(3): 1005-1028 · Zbl 1181.35006
[199] Kindermann S, Osher S, Jones P W. Deblurring and denoising of images by nonlocal functionals. SIAM Journal on Multiscale Modeling & Simulation, 2005, 4(4): 1091-1115 · Zbl 1161.68827
[200] Hu Y, Jacob M. Higher degree total variation (HDTV) regularization for image recovery. IEEE Transactions on Image Processing, 2012, 21(5): 2559-2571 · Zbl 1373.94174
[201] Yang J S, Yu H Y, Jiang M, Wang G. High-order total variation minimization for interior SPECT. Inverse Problems, 2012, 28(1): 15001-15024 · Zbl 1234.92050
[202] Liu X W, Huang L H. A new nonlocal total variation regularization algorithm for image denoising. Mathematics and Computers in Simulation, 2014, 97: 224-233 · Zbl 1533.94006
[203] Ren Z M, He C J, Zhang Q F. Fractional order total variation regularization for image super-resolution. Signal Processing, 2013, 93(9): 2408-2421
[204] Oh S, Woo H, Yun S, Kang M. Non-convex hybrid total variation for image denoising. Journal of Visual Communication & Image Representation, 2013, 24(3): 332-344
[205] Donoho D L. Compressed sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306 · Zbl 1288.94016
[206] Candè E J, Wakin M B. An introduction to compressive sampling. IEEE Signal Processing Magazine, 2008, 25(2): 21-30
[207] Tsaig Y, Donoho D L. Extensions of compressed sensing. Signal Processing, 2006, 86(3): 549-571 · Zbl 1163.94399
[208] Candès E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509 · Zbl 1231.94017
[209] Candès E J, Tao T. Near-optimal signal recovery from random projections: Universal encoding strategies?. IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425 · Zbl 1309.94033
[210] Donoho D L, Elad M. Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization. Proceedings of National Academy of Sciences, 2003, 100(5): 2197-2202 · Zbl 1064.94011
[211] Wright J, Ma Y. Dense error correction via l1-minimization. IEEE Transactions on Information Theory, 2010, 56(7): 3540-3560 · Zbl 1366.94133
[212] Yang J F, Zhang Y. Alternating direction algorithms for ℓ1-problems in compressive sensing. SIAM Journal on Scientific Computing, 2011, 33(1): 250-278. · Zbl 1256.65060
[213] Natarajan B K. Sparse approximate solutions to linear systems. SIAM Journal on Computing, 1995, 24(2): 227-234 · Zbl 0827.68054
[214] Mallat S G, Zhang Z. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415 · Zbl 0842.94004
[215] Tropp J, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666 · Zbl 1288.94022
[216] Blumensath T, Davies M E. Iterative thresholding for sparse approximations. Journal of Fourier Analysis and Applications, 2008, 14(5-6): 629-654 · Zbl 1175.94060
[217] Gorodnitsky I F, Rao B D. Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm. IEEE Transactions on Signal Processing, 1997, 45(3): 600-616
[218] Bao, C. L.; Ji, H.; Quan, Y. H.; Shen, Z. W., l0 norm based dictionary learning by proximal methods with global convergence, 3858-3865 (2014)
[219] Foucart S, Lai M J. Sparsest solutions of underdetermined linear systems via lq-minimization for 0 < q ≤ 1. Applied and Computational Harmonic Analysis, 2009, 26(3): 395-407 · Zbl 1171.90014
[220] Cai T T, Wang L, Xu G. Shifting inequality and recovery of sparse signals. IEEE Transactions on Signal Processing, 2010, 58(3): 1300-1308 · Zbl 1392.94117
[221] Cai T T, Wang L, Xu G. New bounds for restricted isometry constants. IEEE Transactions on Information Theory, 2010, 56(9): 4388-4394 · Zbl 1366.94181
[222] Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, 1998, 20(1): 33-61 · Zbl 0919.94002
[223] Efron B, Hastie T, Johnstone I, Tibshirani R. Least angle regression. The Annals of Statistics, 2004, 32(2): 407-499 · Zbl 1091.62054
[224] Figueiredo M A T, Nowak R D. An EM algorithm for wavelet-based image restoration. IEEE Transactions on Image Processing, 2002, 12(8): 906-916 · Zbl 1279.94015
[225] Starck J L, Mai K N, Murtagh F. Wavelets and curvelets for image deconvolution: a combined approach. Signal Processing, 2003, 83(10): 2279-2283 · Zbl 1145.94329
[226] Herrholz E, Teschke G. Compressive sensing principles and iterative sparse recovery for inverse and ill-posed problems. Inverse Problems, 2010, 26(12): 125012-125035 · Zbl 1208.65068
[227] Jin B, Lorenz D, Schiffler S. Elastic-net regularization: error estimates and active set methods. Inverse Problems, 2009, 25(11): 1595-1610 · Zbl 1188.49026
[228] Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-597
[229] Kim S J, Koh K, Lustig M, Boyd S, Gorinevsky D. An interior-point method for large-scale l1-regularized least squares. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 606-617
[230] Donoho D L, Tsaig Y. Fast solution of l1-norm minimization problems when the solution may be sparse. IEEE Transactions on Information Theory, 2008, 54(11): 4789-4812 · Zbl 1247.94009
[231] Combettes P L, Wajs E R. Signal recovery by proximal forwardbackward splitting. SIAM Journal on Multiscale Modeling & Simulation, 2005, 4(4): 1168-1200 · Zbl 1179.94031
[232] Becker S, Bobin J, Candés E J. NESTA: a fast and accurate firstorder method for sparse recovery. SIAM Journal on Imaging Sciences, 2011, 4(1): 1-39 · Zbl 1209.90265
[233] Osborne M R, Presnell B, Turlach B A. A new approach to variable selection in least squares problems. IMA Journal of Numerical Analysis, 1999, 20(3): 389-403 · Zbl 0962.65036
[234] Li L, Yao X, Stolkin R, Gong M G, He S. An evolutionary multiobjective approach to sparse reconstruction. IEEE Transactions on Evolutionary Computation, 2014, 18(6): 827-845
[235] Chartrand R. Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Processing Letters, 2007, 14(10): 707-710
[236] Candes E J, Tao T. Decoding by linear programming. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215 · Zbl 1264.94121
[237] Saab, R.; Chartrand, R.; Yilmaz, Stable sparse approximations via nonconvex optimization, 3885-3888 (2008)
[238] Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B, 1996, 58(1): 267-288 · Zbl 0850.62538
[239] Zhang C H. Nearly unbiased variable selection under minimax concave penalty. The Annals of Statistics, 2010, 38(2): 894-942 · Zbl 1183.62120
[240] Fan J Q, Li R. Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 2001, 96(456): 1348-1360 · Zbl 1073.62547
[241] Nikolova M, Ng M K, Zhang S, Ching W K. Efficient reconstruction of piecewise constant images using nonsmooth nonconvex minimization. SIAM Journal on Imaging Sciences, 2008, 1(1): 2-25 · Zbl 1207.94017
[242] Frank L E, Friedman J H. A statistical view of some chemometrics regression tools. Technometrics, 1993, 35(2): 109-135 · Zbl 0775.62288
[243] Fu W J. Penalized regressions: the bridge versus the lasso. Journal of Computational and Graphical Statistics, 1998, 7(3): 397-416
[244] Lyu Q, Lin Z C, She Y Y, Zhang C. A comparison of typical lp minimization algorithms. Neurocomputing, 2013, 119: 413-424
[245] Candes E J, Wakin M B, Boyd S P. Enhancing sparsity by reweighted l1 minimization. Journal of Fourier Analysis and Applications, 2008, 14(5-6): 877-905 · Zbl 1176.94014
[246] Rao B D, Kreutz-Delgado K. An affine scaling methodology for best basis selection. IEEE Transactions on Signal Processing, 1999, 47(1): 187-200 · Zbl 0984.94010
[247] She Y Y. Thresholding-based iterative selection procedures for model selection and shrinkage. Electronic Journal of Statistics, 2009, 3: 384-415 · Zbl 1326.62158
[248] Xu Z B, Zhang H, Wang Y, Chang X Y, Liang Y. L1/2 regularization. Science China Information Sciences, 2010, 53(6): 1159-1169 · Zbl 1497.62192
[249] Xu Z B, Guo H L, Wang Y, Zhang H. Representative of L1/2 regularization among lq (0 < q ≤ 1) regularizations: an experimental study based on phase diagram. Acta Automatica Sinica, 2012, 38(7): 1225-1228
[250] Candes E J, Plan Y. Matrix completion with noise. Proceedings of the IEEE, 2009, 98(6): 925-936
[251] Cai J F, Candes E J, Shen Z. A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization, 2010, 20(4): 1956-1982 · Zbl 1201.90155
[252] Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations & Trends in Machine Learning, 2011, 3(1): 1-122 · Zbl 1229.90122
[253] Qian, J. J.; Yang, J.; Zhang, F. L.; Lin, Z. C., Robust low-rank regularized regression for face recognition with occlusion, 21-26 (2014)
[254] Liu Y J, Sun D, Toh K C. An implementable proximal point algorithmic framework for nuclear norm minimization. Mathematical Programming, 2012, 133(1-2): 399-436 · Zbl 1262.90125
[255] Yang J F, Yuan X M. Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization. Mathematics of Computation, 2013, 82(281): 301-329 · Zbl 1263.90062
[256] Li, T.; Wang, W. W.; Xu, L.; Feng, X. C., Image denoising using lowrank dictionary and sparse representation, 228-232 (2014)
[257] Waters, A. E.; Sankaranarayanan, A. C.; Baraniuk, R. G., SpaRCS: recovering low-rank and sparse matrices from compressive measurements, 1089-1097 (2011)
[258] Li, Q.; Lu, Z. B.; Lu, Q. B.; Li, H. Q.; Li, WP, Noise reduction for hyperspectral images based on structural sparse and low-rank matrix decomposition, 1075-1078 (2013)
[259] Zhou, T. Y.; Tao, D. C., Godec: randomized low-rank & sparse matrix decomposition in noisy case, 33-40 (2011)
[260] Zhang H Y, He W, Zhang L P, Shen H F, Yuan Q Q. Hyperspectral image restoration using low-rank matrix recovery. IEEE Transactions on Geoscience & Remote Sensing, 2014, 52(8): 4729-4743
[261] Zhang Z, Xu Y, Yang J, Li X L, Zhang D. A survey of sparse representation: algorithms and applications. IEEE Access, 2015, 3: 490-530
[262] Burger M, Franek M, Schönlieb C B. Regularized regression and density estimation based on optimal transport. Applied Mathematics Research eXpress, 2012, 2012(2): 209-253 · Zbl 1318.62122
[263] Osher S, Solè A, Vese L. Image decomposition and restoration using total variation minimization and the H1 norm. Multiscale Modeling & Simulation, 2003, 1(3): 349-370 · Zbl 1051.49026
[264] Barbara, K., Iterative regularization methods for nonlinear ill-posed problems, 6 (2008) · Zbl 1145.65037
[265] Miettinen K. Nonlinear Multiobjective Optimization. Springer Science & Business Media, 2012 · Zbl 1282.90166
[266] Marler R T, Arora J S. Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization, 2004, 26(6): 369-395 · Zbl 1243.90199
[267] Gong M G, Jiao L C, Yang D D, Ma W P. Research on evolutionary multi-objective optimization algorithms. Journal of Software, 2009, 20(20): 271-289 · Zbl 1212.68263
[268] Fonseca, C. M.; Fleming, P. J., Genetic algorithm for multiobjective optimization: formulation, discussion and generation, 416-423 (1993)
[269] Srinivas N, Deb K. Multiobjective optimization using non-dominated sorting in genetic algorithms. Evolutionary Computation, 1994, 2(3): 221-248
[270] Horn, J.; Nafpliotis, N.; Goldberg, D. E., A niched Pareto genetic algorithm for multiobjective optimization, 1 (1994)
[271] Zitzler E, Thiele L. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation, 1999, 3(4): 257-271
[272] Zitzler E, Laumanns M, Thiele L. SPEA2: improving the strength Pareto evolutionary algorithm. Eurogen, 2001, 3242(103): 95-100
[273] Kim, M.; Hiroyasu, T.; Miki, M.; Watanabe, S., SPEA2+: improving the performance of the strength Pareto evolutionary algorithm 2, 742-751 (2004)
[274] Knowles J D, Corne D W. Approximating the non-dominated front using the Pareto archived evolution strategy. Evolutionary Computation, 2000, 8(2): 149-172
[275] Corne, D. W.; Knowles, J. D.; Oates, M. J., The Pareto-envelope based selection algorithm for multi-objective optimization, 869-878 (2000)
[276] Corne, D. W.; Jerram, N. R.; Knowles, J. D.; Oates, M. J., PESA-II: regionbased selection in evolutionary multi-objective optimization, 283-290 (2001)
[277] Deb K, Agrawal S, Pratap A, Meyarivan T. A fast elitist nondominated sorting genetic algorithm for multi-objective optimization: NSGA-II. Lecture Notes in Computer Science, 2000, 1917: 849-858
[278] Zhang Q F, Li H. MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, 2007, 11(6): 712-731
[279] Ishibuchi, H.; Sakane, Y.; Tsukamoto, N.; Nojima, Y., Simultaneous use of different scalarizing functions in MOEA/D, 519-526 (2010)
[280] Wang L P, Zhang Q F, Zhou A M, Gong M G, Jiao L C. Constrained subproblems in decomposition based multiobjective evolutionary algorithm. IEEE Transactions on Evolutionary Computation, 2016, 20(3): 475-480
[281] Li K, Fialho A, Kwong S, Zhang Q F. Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation, 2014, 18(1): 114-130
[282] Ke L J, Zhang Q F, Battiti R. Hybridization of decomposition and local search for multiobjective optimization. IEEE Transactions on Cybernetics, 2014, 44(10): 1808-1820
[283] Cai, X. Y.; Wei, O., A hybrid of decomposition and domination based evolutionary algorithm for multi-objective software next release problem, 412-417 (2013)
[284] Deb K, Jain H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 577-601
[285] Yuan, Y.; Xu, H.; Wang, B., An improved NSGA-III procedure for evolutionary many-objective optimization, 661-668 (2014)
[286] Seada, H.; Deb, K., U-NSGA-III: a unified evolutionary optimization procedure for single, multiple, and many objectives: proof-ofprinciple results, 34-49 (2015)
[287] Zhu Z X, Xiao J, Li J Q, Zhang Q F. Global path planning of wheeled robots using multi-objective memetic algorithms. Integrated Computer-Aided Engineering, 2015, 22(4): 387-404
[288] Zhu Z X, Jia S, He S, Sun Y W, Ji Z, Shen L L. Three-dimensional Gabor feature extraction for hyperspectral imagery classification using a memetic framework. Information Sciences, 2015, 298: 274-287
[289] Zhu Z X, Xiao J, He S, Ji Z, Sun Y W. A multi-objective memetic algorithm based on locality-sensitive hashing for one-to-many-to-one dynamic pickup-and-delivery problem. Information Sciences, 2015, 329: 73-89
[290] Li H, Gong M G, Wang Q, Liu J, Su L Z. A multiobjective fuzzy clustering method for change detection in synthetic aperture radar images. Applied Soft Computing, 2016, 46: 767-777
[291] Jin Y, Sendhoff B. Pareto based approach to machine learning: an overview and case studies. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 2008, 38(3): 397-415
[292] Plumbley, M. D., Recovery of sparse representations by polytope faces pursuit, 206-213 (2006) · Zbl 1178.94100
[293] Wright S J, Nowak R D, Figueiredo M A T. Sparse reconstruction by separable approximation. IEEE Transactions on Signal Processing, 2009, 57(7): 2479-2493 · Zbl 1391.94442
[294] Yang Y, Yao X, Zhou Z H. On the approximation ability of evolutionary optimization with application to minimum set cover. Artificial Intelligence, 2012, 180(2): 20-33 · Zbl 1238.68152
[295] Qian C, Yu Y, Zhou Z H. An analysis on recombination in multiobjective evolutionary optimization. Artificial Intelligence, 2013, 204(1): 99-119 · Zbl 1334.68203
[296] Gong M G, Zhang M Y, Yuan Y. Unsupervised band selection based on evolutionary multiobjective optimization for hyperspectral images. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(1): 544-557
[297] Qian, C.; Yu, Y.; Zhou, Z. H., Pareto ensemble pruning, 2935-2941 (2015)
[298] Qian, C.; Yu, Y.; Zhou, Z. H., On constrained Boolean Pareto optimization, 389-395 (2015)
[299] Qian, C.; Yu, Y.; Zhou, Z. H., Subset selection by Pareto optimization, 1765-1773 (2015)
[300] Gong M G, Liu J, Li H, Cai Q, Su L Z. A multiobjective sparse feature learning model for deep neural networks. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(12): 3263-3277
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.