×

Clustering approach to model order reduction of power networks with distributed controllers. (English) Zbl 1405.93052

Summary: This paper considers the network structure preserving model reduction of power networks with distributed controllers. The studied system and controller are modeled as second-order and first-order ordinary differential equations, which are coupled to a closed-loop model for analyzing the dissimilarities of the power units. By transfer functions, we characterize the behavior of each node (generator or load) in the power network and define a novel notion of dissimilarity between two nodes by the \(\mathcal{H}_{2}\)-norm of the transfer function deviation. Then, the reduction methodology is developed based on separately clustering the generators and loads according to their behavior dissimilarities. The characteristic matrix of the resulting clustering is adopted for the Galerkin projection to derive explicit reduced-order power models and controllers. Finally, we illustrate the proposed method by the IEEE 30-bus system example.

MSC:

93B11 System structure simplification
90B10 Deterministic network models in operations research
93C15 Control/observation systems governed by ordinary differential equations
93C05 Linear systems in control theory
93-04 Software, source code, etc. for problems pertaining to systems and control theory

Software:

Algorithm 432

References:

[1] Andreasson, M., Tegling, E., Sandberg, H., Johansson, K.H.: Coherence in synchronizing power networks with distributed integral control. arXiv:1703.10425 (2017)
[2] Antoulas, A.C.: Approximation of Large-Scale Dynamical Systems. SIAM (2005) · Zbl 1112.93002
[3] Avramovic, B.; Kokotovic, PV; Winkelman, JR; Chow, JH, Area decomposition for electromechanical models of power systems, Automatica, 16, 637-648, (1980) · Zbl 0467.93003 · doi:10.1016/0005-1098(80)90006-0
[4] Barabási, A.L.: Network Science. Cambridge University Press (2016) · Zbl 1353.94001
[5] Bartels, RH; Stewart, GW, Solution of the matrix equation AX + XB = C, Commun. ACM, 15, 820-826, (1972) · Zbl 1372.65121 · doi:10.1145/361573.361582
[6] Beaulieu, A., de Wilde, J., Scherpen, J.M.A.: Smart Grids from a Global Perspective. Springer (2016)
[7] Bergen, AR; Hill, DJ, A structure preserving model for power system stability analysis, IEEE Trans. Power Apparatus Syst., PAS-100, 25-35, (1981) · doi:10.1109/TPAS.1981.316883
[8] Bernstein, DS; Bhat, SP, Lyapunov stability, semistability, and asymptotic stability of matrix second-order systems, J. Mech. Des., 117, 145-153, (1995) · doi:10.1115/1.2836448
[9] Besselink, B.; Sandberg, H.; Johansson, KH, Clustering-based model reduction of networked passive systems, IEEE Trans. Autom. Control, 61, 2958-2973, (2016) · Zbl 1359.93078 · doi:10.1109/TAC.2015.2505418
[10] Bettayeb, M.; Al-Saggaf, UM, Practical model reduction techniques for power systems, Electr. Power Syst. Res., 25, 169-176, (1992) · doi:10.1016/0378-7796(92)90015-S
[11] Caliskan, SY; Tabuada, P., Towards Kron reduction of generalized electrical networks, Automatica, 50, 2586-2590, (2014) · Zbl 1301.93038 · doi:10.1016/j.automatica.2014.08.017
[12] Cheng, X., Kawano, Y., Scherpen, J.M.A.: Graph structure-preserving model reduction of linear network systems. In: Proceedings of 2016 European Control Conference, pp. 1970-1975 (2016)
[13] Cheng, X.; Kawano, Y.; Scherpen, JMA, Reduction of second-order network systems with structure preservation, IEEE Trans. Autom. Control, 62, 5026-5038, (2017) · Zbl 1390.93187 · doi:10.1109/TAC.2017.2679479
[14] Cheng, X., Scherpen, J.M.A.: Introducing network Gramians to undirected network systems for structure-preserving model reduction. In: Proceedings of 55th IEEE Conference on Decision and Control, pp. 5756-5761 (2016)
[15] Cheng, X., Scherpen, J.M.A.: Balanced truncation approach to linear network system model order reduction. In: Proceedings of the 20th World Congress of the International Federation of Automatic Control (IFAC), pp. 2506-2511. Toulouse (2017)
[16] Chow, J.H.: Power System Coherency and Model Reduction. Springer (2013)
[17] Chow, JH; Galarza, R.; Accari, P.; Price, WW, Inertial and slow coherency aggregation algorithms for power system dynamic model reduction, IEEE Trans. Power Syst., 10, 680-685, (1995) · doi:10.1109/59.387903
[18] Dörfler, F., Bullo, F.: Topological equivalence of a structure-preserving power network model and a non-uniform kuramoto model of coupled oscillators. In: Proceedings of IEEE 50th Conference on Decision and Control and European Control Conference (CDC-ECC), pp 7099-7104. IEEE, Orlando (2011)
[19] Dörfler, F.; Bullo, F., Kron reduction of graphs with applications to electrical networks, IEEE Trans. Circ. Syst. I: Regular Papers, 60, 150-163, (2013) · Zbl 1468.94590
[20] Dörfler, F.; Jovanovic, MR; Chertkov, M.; Bullo, F., Sparsity-promoting optimal wide-area control of power networks, IEEE Trans. Power Syst., 29, 2281-2291, (2014) · doi:10.1109/TPWRS.2014.2304465
[21] Dörfler, F.; Simpson-Porco, JW; Bullo, F., Breaking the hierarchy: distributed control and economic optimality in microgrids, IEEE Trans. Control Netw. Syst., 3, 241-253, (2016) · Zbl 1370.93157 · doi:10.1109/TCNS.2015.2459391
[22] Fiaz, S.; Zonetti, D.; Ortega, R.; Scherpen, JMA; Der Schaft, AJ, A port-Hamiltonian approach to power network modeling and analysis, Eur. J. Control., 19, 477-485, (2013) · Zbl 1293.90007 · doi:10.1016/j.ejcon.2013.09.002
[23] Freitas, FD; Rommes, J.; Martins, N., Gramian-based reduction method applied to large sparse power system descriptor models, IEEE Trans. Power Syst., 23, 1258-1270, (2008) · doi:10.1109/TPWRS.2008.926693
[24] Ghosh, S.; Senroy, N., Balanced truncation approach to power system model order reduction, Electric Power Comp. Syst., 41, 747-764, (2013) · doi:10.1080/15325008.2013.769031
[25] Golub, G.; Nash, S.; Loan, C., A Hessenberg-Schur method for the problem AX + XB = C, IEEE Trans. Autom. Control, 24, 909-913, (1979) · Zbl 0421.65022 · doi:10.1109/TAC.1979.1102170
[26] Hogan, E., Cotilla-Sanchez, E., Halappanavar, M., Wang, S., Mackey, P., Hines, P., Huang, Z.: Towards effective clustering techniques for the analysis of electric power grids. In: Proceedings of the 3rd International Workshop on High Performance Computing, Networking and Analytics for the Power Grid, p. 1. ACM (2013)
[27] Ishizaki, T.; Imura, JI, Clustered model reduction of interconnected second-order systems, IEICE Nonlin. Theory Appl., 6, 26-37, (2015) · doi:10.1587/nolta.6.26
[28] Ishizaki, T.; Kashima, K.; Girard, A.; Imura, Ji; Chen, L.; Aihara, K., Clustered model reduction of positive directed networks, Automatica, 59, 238-247, (2015) · Zbl 1326.93017 · doi:10.1016/j.automatica.2015.06.027
[29] Jain, AK; Murty, MN; Flynn, PJ, Data clustering: a review, ACM Comput. Surv. (CSUR), 31, 264-323, (1999) · doi:10.1145/331499.331504
[30] Kundur, P., Balu, N.J., Lauby, M.G.: Power System Stability and Control, vol. 7. McGraw-Hill, New York (1994)
[31] Larsen, GK; Foreest, ND; Scherpen, JMA, Power supply-demand balance in a smart grid: an information sharing model for a market mechanism, Appl. Math. Model., 38, 3350-3360, (2014) · doi:10.1016/j.apm.2013.11.042
[32] Li, Y.; Geng, G.; Jiang, Q., An efficient parallel Krylov-Schur method for Eigen-analysis of large-scale power systems, IEEE Trans. Power Syst., 31, 920-930, (2016) · doi:10.1109/TPWRS.2015.2418272
[33] Mehrjerdi, H., Lefebvre, S., Asber, D., Saad, M.: Graph partitioning of power network for emergency voltage control. In: 2013 9th Asian Control Conference (ASCC), pp. 1-6. IEEE (2013)
[34] Michele, C., Trip, S., Persis, C.D., Cheng, X., Ferrara, A., Schaft, A.v.d.: A robust consensus algorithm for current sharing and voltage regulation in dc microgrids. To appear in IEEE Transactions on Control Systems Technology (2018)
[35] Mlinarić, P., Grundel, S., Benner, P.: Efficient model order reduction for multi-agent systems using QR decomposition-based clustering. In: Proceedings of 54th IEEE Conference on Decision and Control (CDC), pp. 4794-4799 (2015)
[36] Monshizadeh, N., De Persis, C., van der Schaft, A.J., Scherpen, J.M.A.: A novel reduced model for electrical networks with constant power loads. IEEE Transactions on Automatic Control (2017) · Zbl 1395.93135
[37] Monshizadeh, N.; Trentelman, HL; Camlibel, MK, Projection-based model reduction of multi-agent systems using graph partitions, IEEE Trans. Control Netw. Syst., 1, 145-154, (2014) · Zbl 1370.93023 · doi:10.1109/TCNS.2014.2311883
[38] Pagani, GA; Aiello, M., The power grid as a complex network: a survey, Physica Statist. Mech. Appl., 392, 2688-2700, (2013) · Zbl 1395.94418 · doi:10.1016/j.physa.2013.01.023
[39] Pyo, G.C., Park, J.W., Moon, S.I.: A new method for dynamic reduction of power system using pam algorithm. In: IEEE PES General Meeting, pp. 1-7. https://doi.org/10.1109/PES.2010.5589996 (2010)
[40] Brualdi, R.A., Ryser, H.J.: Combinatorial Matrix Theory. Cambridge University Press (1991) · Zbl 0746.05002
[41] Romeres, D., Dörfler, F., Bullo, F.: Novel results on slow coherency in consensus and power networks. In: Proceedings of the 2013 European Control Conference, pp 742-747. IEEE, Zürich (2013)
[42] Scarciotti, G., Low computational complexity model reduction of power systems with preservation of physical characteristics, IEEE Trans. Power Syst., 32, 743-752, (2017) · doi:10.1109/TPWRS.2016.2556747
[43] van der Schaft, A.J.: On model reduction of physical network systems. In: Proceedings of 21st International Symposium on Mathematical Theory of Networks and Systems (MTNS), pp. 1419-1425. Groningen (2014)
[44] Schiffer, J., Goldin, D., Raisch, J., Sezi, T.: Synchronization of droop-controlled microgrids with distributed rotational and electronic generation. In: Proceedings of 2013 IEEE 52nd Annual Conference on Decision and Control (CDC), pp. 2334-2339. IEEE (2013)
[45] Sturk, C.; Vanfretti, L.; Chompoobutrgool, Y.; Sandberg, H., Coherency-independent structured model reduction of power systems, IEEE Trans. Power Syst., 29, 2418-2426, (2014) · doi:10.1109/TPWRS.2014.2302871
[46] Totonchi, I., Al Akash, H., Al Akash, A., Faza, A.: Sensitivity analysis for the IEEE 30 bus system using load-flow studies. In: 3rd International Conference on Electric Power and Energy Conversion Systems (EPECS), pp. 1-6. IEEE (2013)
[47] Trip, S.; Bürger, M.; De Persis, C., An internal model approach to (optimal) frequency regulation in power grids with time-varying voltages, Automatica, 64, 240-253, (2016) · Zbl 1328.93188 · doi:10.1016/j.automatica.2015.11.021
[48] Xu, G.; Vittal, V., Slow coherency based cutset determination algorithm for large power systems, IEEE Trans. Power Syst., 25, 877-884, (2010) · doi:10.1109/TPWRS.2009.2032421
[49] Zhang, Z., Hu, X., Cheng, C.K., Wong, N.: A block-diagonal structured model reduction scheme for power grid networks. In: Design, Automation & Test in Europe Conference & Exhibition (DATE), 2011, pp. 1-6. IEEE (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.