×

Optimal stopping and reselling of European options. (English) Zbl 1405.91641

Rykov, Vladimir V. (ed.) et al., Mathematical and statistical models and methods in reliability. Applications to medicine, finance, and quality control. Invited papers based on the presentation at the 6th international conference (MMR 2009), Moscow, Russia, June 22–26, 2009. Boston, MA: Birkhäuser (ISBN 978-0-8176-4970-8/hbk; 978-0-8176-4971-5/ebook). Statistics for Industry and Technology, 371-389 (2010).
Summary: We consider the problem of optimal reselling of European options. A bivariate exponential diffusion process is used to describe the reselling model. In this way, the reselling problem is imbedded to the model of finding optimal reward for American type option based on this process. Convergence results are formulated for optimal reward functionals of American type options for perturbed multi-variate Markov processes. An approximation bivariate tree model is constructed and convergence of optimal expected reward for this tree model to the optimal expected reward for the corresponding reselling model is proved.
For the entire collection see [Zbl 1203.60007].

MSC:

91G20 Derivative securities (option pricing, hedging, etc.)
60G40 Stopping times; optimal stopping problems; gambling theory
60H30 Applications of stochastic analysis (to PDEs, etc.)
Full Text: DOI

References:

[1] Amin, K., Khanna, A.: Convergence of American option values from discrete - to continuous - time financial models. Math. Finance, 4, no. 4, 289-304 (1994) · Zbl 0884.90012 · doi:10.1111/j.1467-9965.1994.tb00059.x
[2] Coquet, F., Toldo, S.: Convergence of values in optimal stopping and convergence in optimal stopping times. Electr. J. Probab., 12, no. 8, 207-228 (2007) · Zbl 1144.62067
[3] Dayanik, S., Karatzas, I.: On the optimal stopping problem for one-dimensional diffusions. Stoch. Proc. Appl., 107, 173-212 (2003) · Zbl 1075.60524 · doi:10.1016/S0304-4149(03)00076-0
[4] Dupuis, P., Wang, H.: On the convergence from discrete to continuous time in an optimal stopping problem. Ann. Appl. Probab., 15, 1339-1366 (2005) · Zbl 1138.93066 · doi:10.1214/105051605000000034
[5] Ekström, E., Lindberg, C., Tysk, J., Wanntorp, H.: Optimal liquidation of a call spread. Preprint Uppsala University, Sweden (2009) · Zbl 1193.91154
[6] Gau, B., J.Z. Huang, Subrahmanyam, M.: The valuation of American barrier options using the decomposition technique. J. Econom. Dynam. Control, 24, 1783-1827 (2000) · Zbl 1032.91064
[7] Henderson, V., Hobson, D.: An explicit solution for an optimal stopping/optimal control problem which models an asset sale. Ann. Appl. Probab., 18, 1681-1705 (2008) · Zbl 1165.60021 · doi:10.1214/07-AAP511
[8] Heston, S.L.: A closed form solution for options with stochastic volatility with applications to bond and currency options. Rev. Fin. Stud., 6, no. 2, 327-343 (1993) · Zbl 1384.35131 · doi:10.1093/rfs/6.2.327
[9] Jacka, S.D.: Optimal stopping and the American put. Math. Finance, 1, 1-14 (1991) · Zbl 0900.90109 · doi:10.1111/j.1467-9965.1991.tb00007.x
[10] Jönsson, H.: Monte Carlo studies of American type options with discrete time. Theory Stoch. Process., 7(23), no. 1-2, 163-188 (2001) · Zbl 0976.60066
[11] Jönsson, H.: Optimal Stopping Domains and Reward Functions for Discrete Time American Type Options. Doctoral Dissertation 22, Mälardalen University, Sweden (2005)
[12] Jönsson, H., Kukush, A.G., Silvestrov, D.S.: Threshold structure of optimal stopping strategies for American type options. I. Theor. Ĭmovirn. Mat. Stat., 71, 113-123 (2004) (English translation in Theory Probab. Math. Statist., 71, 93-103).
[13] Jönsson, H., Kukush, A.G., Silvestrov, D.S.: Threshold structure of optimal stopping strategies for American type options. II. Theor. Ĭmovirn. Mat. Stat., 72, 42-53 (2005) (English translation in Theory Probab. Math. Statist., 72, 47-58). · Zbl 1102.91048
[14] Kim, I.: The analytic valuation of American options. Rev. Fin. Stud., 3, 547-572 (1990) · doi:10.1093/rfs/3.4.547
[15] Kukush, A.G., Mishura, Y.S. Shevchenko, G.M.: On reselling of European option. Theory Stoch. Process., 12(28), no. 3-4, 75-87 (2006) · Zbl 1141.91017
[16] Kukush, A.G., Silvestrov, D.S.: Structure of optimal stopping strategies for American type options. In: Uryasev, S. (ed) Probabilistic Constrained Optimization: Methodology and Applications, Kluwer, 173-185 (2000) · Zbl 0989.91034
[17] Kukush, A.G., Silvestrov, D.S.: Skeleton approximations of optimal stopping strategies for American type options with continuous time. Theory Stoch. Process., 7(23), no. 1-2, 215-230 (2001) · Zbl 0976.60067
[18] Kukush, A.G., Silvestrov, D.S.: Optimal pricing for American type options with discrete time. Theory Stoch. Process., 10(26), no. 1-2, 72-96 (2004) · Zbl 1063.91036
[19] Lundgren, R.: Structure of optimal stopping domains for American options with knock out domains. Theory Stoch. Process., 13(29), no. 4, 98-129 (2007) · Zbl 1164.60030
[20] Lundgren, R., Silvestrov, D.: Convergence of option rewards for multivariate price processes, Research Report 2009-10, Department of Mathematics, Stockholm University, 53 pages (http://www.math.su.se) (2009) · Zbl 1274.91443
[21] Lundgren, R., Silvestrov, D., Kukush A.: Reselling of options and convergence of option rewards. J. Num. Appl. Math., 96(1), 149-172 (2008) · Zbl 1164.60054
[22] Peskir, G, Shiryaev, A.: Optimal Stopping and Free-Boundary Problems. Birkhauser, Basel (2006) · Zbl 1115.60001
[23] Prigent, J.L.: Weak Convergence of Financial Markets. Springer, New York (2003) · Zbl 1094.91002 · doi:10.1007/978-3-540-24831-6
[24] Schöbel, R., Zhu, J.: Stochastic volatility with Ornstein -Uhlenbeck process: an extension. Europ. Fin. Stud., 6, 327-343 (1999)
[25] Shepp, L.A., Shiryaev A.N.: The Russian option: reduced regret. Ann. Appl. Probab., 3, no. 3, 631-640 (1993) · Zbl 0783.90011 · doi:10.1214/aoap/1177005355
[26] Silvestrov, D., Galochkin, V., Malyarenko, A.: OPTAN - a pilot program system for analysis of optaions. Theory Stoch. Process., 7(23), no. 1-2, 291-300 (2001) · Zbl 0979.91033
[27] Silvestrov, D.S., Galochkin, V.G., Sibirtsev, V.G.: Algorithms and Programs for optimal Monte Carlo pricing of American type options. Theory Stoch. Process., 5(21), no. 1-2, 175-187 (1999) · Zbl 0940.62102
[28] Silvestrov, D., Jönsson, H., Stenberg, F.: Convergence of option rewards for Markov type price processes. Theory Stoch. Process., 13(29), no. 4, 174-185 (2007)
[29] Silvestrov, D.S., Jönsson, H., Stenberg F.: Convergence of option rewards for Markov type price processes modulated by stochastic indices. Eurandom Research Reports, 2008-041, Eurandom, 34 pages (http://www.eurandom.nl) (2008)
[30] Silvestrov, D., Jönsson, H., Stenberg, F.: Convergence of option rewards for Markov type price processes modulated by stochastic indices I, II. Theor. Ĭmovirn. Mat. Stat., 79, 138-154 (2008), 80 (2009) (English translation in Theory Probab. Math. Statist., 79, 153-170 (2009), 80, (2010), \(to appear.\)). · Zbl 1224.91199
[31] Skorokhod, A.V.: Random Processes with Independent Increments. Probability Theory and Mathematical Statistics, Nauka, Moscow (1964) (English edition: Nat. Lending Library for Sci. and Tech., Boston Spa, 1971)
[32] Stein, E.M., Stein, J.C.: Stock price distribution with stochastic volatility: An analytical approach. Rev. Fin. Stud., 4, no 4, 727-752 (1991) · Zbl 1458.62253
[33] Xia, J., Zhou, X.: Stock loans. Math. Finance, 17, no. 2, 307-317 (2007) · Zbl 1186.91221 · doi:10.1111/j.1467-9965.2006.00305.x
[34] Zhang, Z., Lim, K-G.: A non-lattice pricing model of American options under stochastic volatility. J. Futures Markets, 26, no. 5, 417-448 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.