×

Feasibility of CO\(_2\) migration detection using pressure and CO\(_2\) saturation monitoring above an imperfect primary seal of a geologic CO\(_2\) storage formation: a numerical investigation. (English) Zbl 1405.86028

Summary: A numerical model was developed to investigate the potential to detect fluid migration in a (homogeneous, isotropic, with constant pressure lateral boundaries) porous and permeable interval overlying an imperfect primary seal of a geologic CO\(_2\) storage formation. The seal imperfection was modeled as a single higher-permeability zone in an otherwise low-permeability seal, with the center of that zone offset from the CO\(_2\) injection well by 1400 m. Pressure response resulting from fluid migration through the high-permeability zone was detectable up to 1650 m from the centroid of that zone at the base of the monitored interval after 30 years of CO\(_2\) injection (detection limit = 0.1 MPa pressure increase); no pressure response was detectable at the top of the monitored interval at the same point in time. CO\(_2\) saturation response could be up to 774 m from the center of the high-permeability zone at the bottom of the monitored interval, and 1103 m at the top (saturation detection limit = 0.01). More than 6% of the injected CO\(_2\), by mass, migrated out of primary containment after 130 years of site performance (including 30 years of active injection) in the case where the zone of seal imperfection had a moderately high permeability (10\(^{-17}\) m\(^2\) or 0.01 mD). Free-phase CO\(_2\) saturation monitoring at the top of the overlying interval provides favorable spatial coverage for detecting fluid migration across the primary seal. Improved sensitivity of detection for pressure perturbation will benefit time of detection above an imperfect seal.

MSC:

86A60 Geological problems
76S05 Flows in porous media; filtration; seepage
76N15 Gas dynamics (general theory)
Full Text: DOI

References:

[1] IPCC: Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2014)
[2] Meinshausen, M., Meinshausen, N., Hare, W., Raper, S.C., Frieler, K., Knutti, R., Frame, D.J., Allen, M.R.: Greenhouse-gas emission targets for limiting global warming to 2 ∘\(^{\circ }C\). Nature 458(7242), 1158-1162 (2009) · doi:10.1038/nature08017
[3] Shakun, J.D., Clark, P.U., He, F., Marcott, S.A., Mix, A.C., Liu, Z., Otto-Bliesner, B., Schmittner, A., Bard, E.: Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484(7392), 49-54 (2012) · doi:10.1038/nature10915
[4] Zhang, L., Dzombak, D.A., Nakles, D.V., Brunet, J.P.L., Li, L.: Reactive transport modeling of interactions between acid gas (CO2 + H2S) and pozzolan-amended wellbore cement under geologic carbon sequestration conditions. Energy Fuels 27(11), 6921-6937 (2013) · doi:10.1021/ef401749x
[5] Carbon Storage Atlas: Carbon storage atlas—fifth edition (Atlas V). Available at: http://www.netl.doe.gov/research/coal/carbon-storage/atlasv (2015)
[6] Edlmann, K., Haszeldine, S., McDermott, C.I.: Experimental investigation into the sealing capability of naturally fractured shale caprocks to supercritical carbon dioxide flow. Environ. Earth Sci. 70(7), 3393-3409 (2013) · doi:10.1007/s12665-013-2407-y
[7] Nordbotten, J.M., Celia, M.A., Bachu, S., Dahle, H.K.: Semianalytical solution for CO2 leakage through an abandoned well. Environ. Sci. Technol. 39(2), 602-611 (2005) · doi:10.1021/es035338i
[8] Class, H., Ebigbo, A., Helmig, R., Dahle, H.K., Nordbotten, J.M., Celia, M.A., Flemisch, B.: A benchmark study on problems related to CO2 storage in geologic formations. Comput. Geosci. 13(4), 409-434 (2009) · Zbl 1190.86011 · doi:10.1007/s10596-009-9146-x
[9] Angeli, M., Soldal, M., Skurtveit, E., Aker, E.: Experimental percolation of supercritical CO2 through a caprock. Energy Procedia 1, 3351-3358 (2009) · doi:10.1016/j.egypro.2009.02.123
[10] Wollenweber, J., Alles, A., Busch, A., Krooss, B.M., Stanjek, H., Littke, R.: Experimental investigation of the CO2 sealing efficiency of caprocks. Int. J. Greenh. Gas Control 4, 231-241 (2010) · doi:10.1016/j.ijggc.2010.01.003
[11] Busch, A., Amann, A., Bertier, P., Waschbusch, M., Kroos, B.M.: The significance of caprock sealing integrity for CO2 storage. In: SPE 139588 (2010)
[12] Iding, M., Ringrose, P.: Evaluating the impact of fractures on the performance of the In Salah CO2 storage site. Int. J. Greenh. Gas Control 4(2), 242-248 (2010) · doi:10.1016/j.ijggc.2009.10.016
[13] Andreani, M., Gouze, P., Luquot, L., Jouanna, P.: Changes in seal capacity of fractured claystone caprocks induced by dissolved and gaseous CO2 seepage. Geophys. Res. Lett. 35, L14404 (2008). https://doi.org/10.1029/2008GL034467 · doi:10.1029/2008GL034467
[14] Ellis, B.R., Fitts, J.P., Bromhal, G.S., McIntyre, D.L., Tappero, R., Peters, C.A.: Dissolution-driven permeability reduction of a fractured carbonate caprock. Environ. Eng. Sci. 30(4), 187-193 (2013) · doi:10.1089/ees.2012.0337
[15] Oldenburg, C.M., Pruess, K., Benson, S.M.: Process modeling of CO2 injection into natural gas reservoirs for carbon sequestration and enhanced gas recovery. Energy Fuels 15(2), 293-298 (2001) · doi:10.1021/ef000247h
[16] Pruess, K.: Numerical simulation of CO2 leakage from a geologic disposal reservoir, including transitions from super-to subcritical conditions, and boiling of liquid CO2. SPE J. 9(02), 237-248 (2004) · doi:10.2118/86098-PA
[17] Xu, T., Apps, J.A., Pruess, K.: Numerical simulation of CO2 disposal by mineral trapping in deep aquifers. Appl. Geochem. 19(6), 917-936 (2004) · doi:10.1016/j.apgeochem.2003.11.003
[18] Bielinski, A.: Numerical simulation of CO2 sequestration in geological formations. Ph.D. Dissertation, Universität Stuttgart, Germany (2007). Available at: http://elib.uni-stuttgart.de/opus/volltexte/2007/2953/
[19] Bryant, S.L., Lakshminarasimhan, S., Pope, G.A.: Buoyancy-dominated multiphase flow and its effect on geological sequestration of CO2. SPE J. 13(04), 447-454 (2008) · doi:10.2118/99938-PA
[20] Pruess, K., Nordbotten, J.: Numerical simulation studies of the long-term evolution of a CO2 plume in a saline aquifer with a sloping caprock. Transp. Porous Media 90(1), 135-151 (2011) · doi:10.1007/s11242-011-9729-6
[21] Heath, J.E., McKenna, S.A., Dewers, T.A., Roach, J.D., Kobos, P.H.: Multiwell CO2 injectivity: impact of boundary conditions and brine extraction on geologic CO2 storage efficiency and pressure buildup. Environ. Sci. Technol. 48(2), 1067-1074 (2014) · doi:10.1021/es4017014
[22] Pruess, K., Garcia, J.: Multiphase flow dynamics during CO2 disposal into saline aquifers. Environ. Geol. 42(2-3), 282-295 (2002) · doi:10.1007/s00254-001-0498-3
[23] Pruess, K.: Numerical studies of fluid leakage from a geologic disposal reservoir for CO2 show self-limiting feedback between fluid flow and heat transfer. Geophys. Res. Lett. 32, L14404 (2005). https://doi.org/10.1029/2005GL023250 · doi:10.1029/2005GL023250
[24] Zheng, L., Spycher, N., Birkholzer, J., Xu, T., Apps, J., Kharaka, Y.: On modeling the potential impacts of CO2 sequestration on shallow groundwater: transport of organics and co-injected H2S by supercritical CO2 to shallow aquifers. Int. J. Greenh. Control 14, 113-127 (2013) · doi:10.1016/j.ijggc.2013.01.014
[25] Siriwardane, H.J., Gondle, R.K., Bromhal, G.S.: Coupled flow and deformation modeling of carbon dioxide migration in the presence of a caprock fracture during injection. Energy Fuels 27(8), 4232-4243 (2013) · doi:10.1021/ef400194n
[26] Tao, Q., Bryant, S.L., Meckel, T.A.: Modeling above-zone measurements of pressure and temperature for monitoring CCS sites. Int. J. Greenh. Control 18, 523-530 (2013) · doi:10.1016/j.ijggc.2012.08.011
[27] Zeidouni, M.: Analytical model of well leakage pressure perturbations in a closed aquifer system. Adv. Water Resour. 69, 13-22 (2014) · doi:10.1016/j.advwatres.2014.03.004
[28] Rutqvist, J., Wu, Y.S., Tsang, C.F., Bodvarsson, G.: A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock. Int. J. Rock Mech. Mining Sci. 39(4), 429-442 (2002) · doi:10.1016/S1365-1609(02)00022-9
[29] Birkholzer, J.T., Zhou, Q., Tsang, C.F.: Large-scale impact of CO2 storage in deep saline aquifers: a sensitivity study on pressure response in stratified systems. Int. J. Greenh. Control 3(2), 181-194 (2009) · doi:10.1016/j.ijggc.2008.08.002
[30] Iding, M., Ringrose, P.: Evaluating the impact of fractures on the long-term performance of the In Salah CO2 storage site. Energy Procedia 1(1), 2021-2028 (2009) · doi:10.1016/j.egypro.2009.01.263
[31] Gherardi, F., Xu, T., Pruess, K.: Numerical modeling of self-limiting and self-enhancing caprock alteration induced by CO2 storage in a depleted gas reservoir. Chem. Geol. 244(1), 103-129 (2007) · doi:10.1016/j.chemgeo.2007.06.009
[32] Rinaldi, A.P., Rutqvist, J.: Modeling of deep fracture zone opening and transient ground surface uplift at KB-502 CO2 injection well, In Salah, Algeria. Int. J. Greenh. Control 12, 155-167 (2013) · doi:10.1016/j.ijggc.2012.10.017
[33] Zhao, X., Ma, R., Zhang, F., Zhong, Z., Wang, B., Wang, Y., Li, Y., Weng, L.: The latest monitoring progress for Shenhua CO2 storage project in China. Int. J. Greenh. Gas Control 60, 199-206 (2017) · doi:10.1016/j.ijggc.2017.03.004
[34] Chadwick, A., Arts, R., Bernstone, C., May, F., Thibeau, S., Zweigel, P.: Best practice for the storage of CO2 in saline aquifers-observations and guidelines from the SACS and CO2STORE projects, vol. 14. British Geological Survey, British (2008)
[35] Harris, K., White, D., Melanson, D., Samson, C., Daley, T.M.: Feasibility of time-lapse VSP monitoring at the Aquistore CO2 storage site using a distributed acoustic sensing system. Int. J. Greenh. Gas Control 50, 248-260 (2016) · doi:10.1016/j.ijggc.2016.04.016
[36] Mathieson, A., Midgely, J., Wright, I., Saoula, N., Ringrose, P.: In Salah CO2 storage JIP: CO2 sequestration monitoring and verification technologies applied at Krechba, Algeria. Energy Procedia 4, 3596-3603 (2011) · doi:10.1016/j.egypro.2011.02.289
[37] Hovorka, S.D., Benson, S.M., Doughty, C., Freifeld, B.M., Sakurai, S., Daley, T.M., Kharaka, Y.K., Holtz, M.H., Trautz, R.C., Nance, H.S., Myer, L.R.: Measuring permanence of CO2 storage in saline formations: the Frio experiment. Environ. Geosci. 13(2), 105-121 (2006) · doi:10.1306/eg.11210505011
[38] Martens, S., Kempka, T., Liebscher, A., Lüth, S., Möller, F., Myrttinen, A., Norden, B., Schmidt-Hattenberger, C., Zimmer, M., Kühn, M.: Europe’s longest-operating on-shore CO2 storage site at Ketzin, Germany: a progress report after three years of injection. Environ. Earth Sci. 67(2), 323-334 (2012) · doi:10.1007/s12665-012-1672-5
[39] Wang, Z., Small, M.J.: Statistical performance of CO2 leakage detection using seismic travel time measurements. Greenh. Gases: Sci. Technol. 6(1), 55-69 (2016) · doi:10.1002/ghg.1533
[40] Zhang, Y., Park, H., Nishizawa, O., Kiyama, T., Xue, Z.: Fluid distribution effects on P-wave velocity of CO2/brine saturated rocks: a comparison study and implications for CO2 storage monitoring using seismic method. Energy Procedia 114, 3786-3792 (2017) · doi:10.1016/j.egypro.2017.03.1509
[41] Daley, T.M., Solbau, R.D., Ajo-Franklin, J.B., Benson, S.M.: Continuous active-source seismic monitoring of CO2 injection in a brine aquifer. Geophysics 72(5), A57-A61 (2007) · doi:10.1190/1.2754716
[42] Office of Fossil Energy: DOE-Funded project testing laser CO2 monitoring at carbon storage site. Available at: https://energy.gov/fe/articles/doe-funded-project-testing-laser-co2-monitoring-carbon-storage-site (2015)
[43] Flude, S., Johnson, G., Gilfillan, S.M., Haszeldine, R.S.: Inherent tracers for carbon capture and storage in sedimentary formations: composition and applications. Environ. Sci. Technol. 50(15), 7939-7955 (2016) · doi:10.1021/acs.est.6b01548
[44] Yang, Y.M., Dilmore, R., Mansoor, K., Carroll, S., Bromhal G., Small, M.: Risk-based monitoring network design for geologic carbon storage sites. Energy Procedia (in press) (2017)
[45] Cacas, M.C., Ledoux, E., Marsily, G.D., Tillie, B., Barbreau, A., Durand, E., Feuga, B., Peaudecerf, P.: Modeling fracture flow with a stochastic discrete fracture network: calibration and validation: 1. The flow model. Water Resour. Res. 26(3), 479-489 (1990)
[46] McVey, D.S., Mohaghegh, S.: Identification of parameters influencing the response of gas storage wells to hydraulic fracturing with the aid of a neural network. SPE Comput. Appl. 8(02), 54-57 (1996)
[47] Liu, H.H., Doughty, C., Bodvarsson, G.S.: An active fracture model for unsaturated flow and transport in fractured rocks. Water Resour. Res. 34(10), 2633-2646 (1998) · doi:10.1029/98WR02040
[48] Goktas, B., Ertekin, T.: A comparative analysis of the production characteristics of cavity completions and hydraulic fractures in coalbed methane reservoirs. In: SPE Rocky Mountain Regional Meeting, pp. 205-214 (1999)
[49] Kim, J.G., Deo, M.D.: Finite element, discrete-fracture model for multiphase flow in porous media. AIChE J. 46(6), 1120-1130 (2000) · doi:10.1002/aic.690460604
[50] Warren, J.E., Root, P.J.: The behavior of naturally fractured reservoirs. Soc. Pet. Eng. J. Trans. AIME 228, 245-255 (1963) · doi:10.2118/426-PA
[51] Griffith, C.A.: Physical characteristics of caprock formations used for geological storage of CO2 and the impact of uncertainty in fracture properties in CO2 transport through fractured caprocks. Ph.D. dissertation, Carnegie Mellon University, Pittsburgh (2012)
[52] McKoy, M.L.: Two-dimensional stochastic fracture-porosity models for strata-bound fracture networks and application to the recovery efficiency test (RET #1) well in Wayne County, West Virginia. U.S. DOE Report No. 4CCH-R94-001. U.S. DOE, Morgantown Energy Technology Center, Morgantown (1994)
[53] Bower, K.M., Zyvoloski, G.: A numerical model for thermohydro-mechanical coupling in fractured rock. Int. J. Rock Mech. Min. Sci. 34(8), 1201-1211 (1997) · doi:10.1016/S1365-1609(97)80071-8
[54] Yin, Q., Jing, H., Su, H., Wang, H.: CO2 permeability analysis of caprock containing a single fracture subject to coupled thermal-hydromechanical effects. Mathematical Problems in Engineering (2017)
[55] Witherspoon, P.A., Wang, J.S.Y., Iwai, K., Gale, J.E.: Validity of Cubic Law for fluid flow in a deformable rock fracture. Water Resour. Res. 16(6), 1016-1024 (1980) · doi:10.1029/WR016i006p01016
[56] Craft, B.C., Hawkins, M.F., Terry, R.E.: Applied petroleum reservoir engineering, p 431. Prentice Hall, Englewood Cliffs (1991)
[57] Bromhal, G., ArcentalesBastidas, D., Birkholzer, J., Cihan, A., Dempsey, D., Fathi, E., King, S., Pawar, R., Richard, T., Wainwright, H., Zhang, Y., Guthrie, G.: Use of science-based prediction to characterize reservoir behavior as a function of injection characteristics, geological variables, and time. NRAP-TRS-I-005-2014; NRAP Technical Report Series, U.S. Department of Energy, National Energy Technology Laboratory: Morgantown (2014)
[58] Zhang, L., Dilmore, R., Bromhal, G.: Effect of outer boundary condition, reservoir size, and CO2 effective permeability on pressure and CO2 saturation predictions under carbon sequestration conditions. Greenh. Gases: Sci. Technol. 6, 546-560 (2016) · doi:10.1002/ghg.1586
[59] Li, Z., Dong, M., Li, S., Huang, S.: CO2 sequestration in depleted oil and gas reservoirs—caprock characterization and storage capacity. Energy Convers. Manag. 47(11), 1372-1382 (2006) · doi:10.1016/j.enconman.2005.08.023
[60] Vilarrasa, V., Carrera, J., Bolster, D., Dentz, M.: Semianalytical solution for CO2 plume shape and pressure evolution during CO2 injection in deep saline formations. Transp. Porous Media 97(1), 43-65 (2013) · doi:10.1007/s11242-012-0109-7
[61] Caspari, E., Müller, T.M., Gurevich, B.: Time-lapse sonic logs reveal patchy CO2 saturation in-situ. Geophys. Res. Lett. 38, L13301 (2011). https://doi.org/10.1029/2011GL046959 · doi:10.1029/2011GL046959
[62] Yang, C., Romanak, K., Hovorka, S., Triveno, R.: Modeling CO2 release experiment in the shallow subsurface and sensitivity analysis. Environ. Eng. Geosci. 19(3), 207-220 (2013) · doi:10.2113/gseegeosci.19.3.207
[63] Kim, S., Hosseini, S.A.: Above-zone pressure monitoring and geomechanical analyses for a field-scale CO2 injection project in Cranfield, MS. Greenh. Gases: Sci. Technol. 4(1), 81-98 (2014) · doi:10.1002/ghg.1388
[64] Rutqvist, J.: The geomechanics of CO2 storage in deep sedimentary formations. Geotech. Geol. Eng. 30(3), 525-551 (2012) · doi:10.1007/s10706-011-9491-0
[65] Varre, S.B., Siriwardane, H.J., Gondle, R.K., Bromhal, G.S., Chandrasekar, V., Sams, N.: Influence of geochemical processes on the geomechanical response of the overburden due to CO2 storage in saline aquifers. Int. J. Greenh. Gas Control 42, 138-156 (2015) · doi:10.1016/j.ijggc.2015.07.029
[66] van Genuchten, M.T.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Amer. J. 44(5), 892-898 (1980) · doi:10.2136/sssaj1980.03615995004400050002x
[67] Wang, Z., Small, M.J.: A Bayesian approach to CO2 leakage detection at saline sequestration sites using pressure measurements. Int. J. Greenh. Gas Control 30, 188-196 (2014) · doi:10.1016/j.ijggc.2014.09.011
[68] Birkholzer, J., Cihan, A., Zhou, Q.: Impact-driven pressure management via targeted brine extraction—conceptual studies of CO2 storage in saline formations. Int. J. Greenh. Gas Control 7, 168-180 (2012) · doi:10.1016/j.ijggc.2012.01.001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.