×

Convergence of a gradient damage model toward a cohesive zone model. (English) Zbl 1405.74031

Summary: The study starts from a specific gradient damage model which admits a closed-form solution in the case of uniaxial tension. It enables to separate the parameters of the model between a length scale, characteristic of nonlocal effects, and macroscopic parameters which retain their meaning in a cohesive crack setting. A convergence analysis is performed: the response of a cohesive zone model is retrieved when the length scale goes to zero while keeping the macroscopic parameters constant.

MSC:

74R05 Brittle damage
74G05 Explicit solutions of equilibrium problems in solid mechanics

Software:

Code_Aster
Full Text: DOI

References:

[1] Lemaitre, J.; Chaboche, J. -L.: Mécanique des matériaux solides, (1988)
[2] Benallal, A.; Billardon, R.; Geymonat, G.: Bifurcation and localization in rate-independent materials. Some general considerations, CISM courses and lectures 327, 1-44 (1993)
[3] Bazant, Z. P.; Belytschko, T. B.; Chang, T. P.: Continuum theory for strain-softening, J. engng. Mech. div. ASCE 110, 1666-1692 (1984)
[4] Drugan, W. J.; Willis, J. R.: A micromechanics-based nonlocal constitutive equation and estimates of representative volume element size for elastic composites, J. mech. Phys. solids 44, 497-524 (1996) · Zbl 1054.74704 · doi:10.1016/0022-5096(96)00007-5
[5] Andrieux, S.; Joussemet, M.; Lorentz, E.: A class of constitutive relations with internal variable derivatives: derivation from homogenization, CR acad. Sci. Paris 323 série, 629-636 (1996) · Zbl 0917.73006
[6] Lorentz, E.; Andrieux, S.: Analysis of nonlocal models through energetic formulations, Int. J. Sol. struct. 40, 2905-2936 (2003) · Zbl 1038.74506 · doi:10.1016/S0020-7683(03)00110-0
[7] Pijaudier-Cabot, G.; Bazant, Z. P.: Nonlocal damage theory, J. engrg. Mech., ASCE 113, 1512-1533 (1987)
[8] Peerlings, R. H. J.; De Borst, R.; Brekelmans, W. A. M.; De Vree, J. H. P.: Gradient-enhanced damage for quasi-brittle materials, Int. J. Num. methods engrg. 39, 3391-3403 (1996) · Zbl 0882.73057 · doi:10.1002/(SICI)1097-0207(19961015)39:19<3391::AID-NME7>3.0.CO;2-D
[9] Triantafyllidis, N.; Aifantis, E. C.: A gradient approach to localization of deformation. I – hyperelastic materials, J. elast. 16, 225-237 (1986) · Zbl 0594.73044 · doi:10.1007/BF00040814
[10] Chambon, R.; Caillerie, D.; Matsuchima, T.: Plastic continuum with microstructure, local second gradient theories for geomaterials: localization studies, Int. J. Solids struct. 38, 8503-8527 (2001) · Zbl 1047.74522 · doi:10.1016/S0020-7683(01)00057-9
[11] Mühlhaus, H. B.; Aifantis, E. C.: A variational principle for gradient plasticity, Int. J. Solids struct. 28, 845-857 (1991) · Zbl 0749.73029 · doi:10.1016/0020-7683(91)90004-Y
[12] Svedberg, T.; Runesson, K.: A thermodynamically consistent theory of gradient-regularized plasticity coupled to damage, Int. J. Plast. 13, 669-696 (1997) · Zbl 0897.73023 · doi:10.1016/S0749-6419(97)00033-8
[13] Frémond, M.; Nedjar, B.: Damage, gradient of damage and principle of virtual power, Int. J. Solids struct. 33, 1083-1103 (1996) · Zbl 0910.73051 · doi:10.1016/0020-7683(95)00074-7
[14] Pijaudier-Cabot, G.; Burlion, N.: Damage and localisation in elastic materials with voids, Mech. coh. Frict. mat. 1, 129-144 (1996)
[15] Lorentz, E.; Andrieux, S.: A variational formulation for nonlocal damage models, Int. J. Plast. 15, 119-138 (1999) · Zbl 1024.74005 · doi:10.1016/S0749-6419(98)00057-6
[16] Lorentz, E.; Benallal, A.: Gradient constitutive relations: numerical aspects and application to gradient damage, Comput. methods appl. Mech. engrg. 194, 5191-5220 (2005) · Zbl 1092.74049 · doi:10.1016/j.cma.2004.12.016
[17] R.H.J. Peerlings, Enhanced damage modelling for fracture and fatigue, Ph.D. Thesis, Eindhoven University of Technology, The Netherlands, 1999, pp. 65 – 66.
[18] Liebe, T.; Steinman, P.; Benallal, A.: Theoretical and computational aspects of a thermodynamically consistent framework for geometrically linear gradient damage, Comput. methods appl. Mech. engrg. 190, 6555-6576 (2001) · Zbl 0991.74010 · doi:10.1016/S0045-7825(01)00250-X
[19] Svedberg, T.; Runesson, K.: An algorithm for gradient-regularized plasticity coupled to damage based on a dual mixed FE-formulation, Comput. methods appl. Mech. engrg. 161, 49-65 (1998) · Zbl 0948.74054 · doi:10.1016/S0045-7825(97)00309-5
[20] Dimitrijevic, B. J.; Hackl, K.: A method for gradient enhancement of continuum damage models, Tech. mechanik 28, 43-52 (2008)
[21] Bourdin, B.; Francfort, G.; Marigo, J. -J.: The variational approach to fracture, (2008) · Zbl 1176.74018
[22] Halphen, B.; Nguyen, Q. S.: Sur LES matériaux standard generalises, J. de mécanique 14, 39-63 (1975) · Zbl 0308.73017
[23] Germain, P.; Nguyen, Q. S.; Suquet, P.: Continuum thermodynamics, J. appl. Mech. 50, 1010-1020 (1983) · Zbl 0536.73004 · doi:10.1115/1.3167184
[24] Ekeland, I.; Temam, R.: Analyse convexe et problèmes variationnels, (1974) · Zbl 0281.49001
[25] Benallal, A.; Marigo, J. -J.: Bifurcation and stability issues in gradient theories with softening, Model. simul. Mater. sci. Engrg. 15, 283-295 (2007)
[26] Francfort, G.; Mielke, A.: Existence results for a class of rate-independent material models with nonconvex elastic energies, J. reine angew. Math. 595, 55-91 (2006) · Zbl 1101.74015 · doi:10.1515/CRELLE.2006.044
[27] Fortin, M.; Glowinski, R.: Augmented Lagrangian methods: application to the numerical solution of boundary-value problems, Studies in mathematics and its applications 15 (1983) · Zbl 0525.65045
[28] Ern, A.; Meunier, S.: A posteriori error analysis of Euler – Galerkin approximations to coupled elliptic-parabolic problems, ESAIM math. Mod. numer. Anal. 43, 353-375 (2009) · Zbl 1166.76036 · doi:10.1051/m2an:2008048
[29] Simone, A.; Askes, H.; Peerlings, R. H. J.; Sluys, L. J.: Interpolation requirements for implicit gradient-enhanced continuum damage models, Commun. numer. Methods engrg. 19, 563-572 (2003) · Zbl 1113.74313 · doi:10.1002/cnm.663
[30] Marigo, J. -J.: Formulation d’une loi d’endommagement d’un matériau élastique, CR acad. Sci. Paris, série iib 292, 1309-1312 (1981) · Zbl 0485.73087
[31] Badel, P. -B.; Godard, V.; Leblond, J. -B.: Application of some anisotropic damage model to the prediction of the failure of some complex industrial concrete structure, Int. J. Solids struct. 44, 5848-5874 (2007) · Zbl 1178.74153 · doi:10.1016/j.ijsolstr.2007.02.001
[32] De Borst, R.: Computation of post-bifurcation and post-failure behaviour of strain-softening solids, Comput. struct. 25, 211-224 (1987) · Zbl 0603.73046 · doi:10.1016/0045-7949(87)90144-1
[33] Crisfield, M. A.: Snap-through and snap-back response in concrete structures and the dangers of under-integration, Int. J. Num. methods engrg. 22, 751-767 (1986) · Zbl 0586.73115 · doi:10.1002/nme.1620220314
[34] Lorentz, E.; Badel, P.: A new path-following constraint for strain-softening finite element simulations, Int. J. Num. methods engrg. 60, 499-526 (2004) · Zbl 1060.74631 · doi:10.1002/nme.971
[35] Code_Aster, finite element software distributed by EDF, open-source and freely available on &lt;www.code-aster.org&gt;.
[36] Rice, J. R.: The mechanics of earthquake rupture, Proceedings of international school of physics ”enrico Fermi course 78, 555-649 (1979)
[37] Meschke, G.; Dumstorff, P.: Energy-based modeling of cohesive and cohesionless cracks via X-FEM, Comput. methods appl. Mech. engrg. 196, 2338-2357 (2007) · Zbl 1173.74384 · doi:10.1016/j.cma.2006.11.016
[38] Kobayashi, A. S.; Hawkins, N. M.; Barker, D. B.; Liaw, B. M.: Fracture process zone of concrete, NATO-arw, 25-50 (1984)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.