×

Superconvergence results of Legendre spectral projection methods for weakly singular Fredholm-Hammerstein integral equations. (English) Zbl 1405.65173

Summary: We consider the Galerkin method to approximate the solution of Fredholm-Hammerstein integral equations of second kind with weakly singular kernels, using Legendre polynomial bases. We prove that for both the algebraic and logarithmic kernels, the Legendre Galerkin method has order of convergence \(\mathcal{O}(n^{- r}),\) whereas the iterated Legendre Galerkin method converges with the order \(\mathcal{O}(n^{- r - \alpha + \frac{1}{2}})\) for the algebraic kernel, and order \(\mathcal{O}(\log n\, n^{- r - \frac{1}{2}})\) for logarithmic kernel in both \(L^2\)-norm and infinity norm, where \(n\) is the highest degree of the Legendre polynomial employed in the approximation and \(r\) is the smoothness of the solution. We also propose the Legendre multi-Galerkin and iterated Legendre multi-Galerkin methods. We prove that iterated Legendre multi-Galerkin method has order of convergence \(\mathcal{O}((1 + c\log\, n) n^{- r - 2 \alpha + \frac{1}{2}})\) for the algebraic kernel, and order of convergence \(\mathcal{O}((\log n)^2(1 + c\log\, n) n^{- r - \frac{3}{2}})\) for logarithmic kernel in both \(L^2\)-norm and infinity norm. Numerical examples are given to illustrate the theoretical results.

MSC:

65R20 Numerical methods for integral equations
45B05 Fredholm integral equations
45G10 Other nonlinear integral equations
Full Text: DOI

References:

[1] Chen, Z.; Li, J.; Zhang, Y., A fast multiscale solver for modified Hammerstein equations, Appl. Math. Comput., 218, 3057-3067 (2011) · Zbl 1250.65156
[2] L. Grammont, H. Kaboul, An improvement of the product integration method for a weakly singular Hammerstein equation, 2016, arXiv preprint arXiv:1604.00881; L. Grammont, H. Kaboul, An improvement of the product integration method for a weakly singular Hammerstein equation, 2016, arXiv preprint arXiv:1604.00881
[3] Kaneko, H.; Noren, R. D.; Padilla, P. A., Superconvergence of the iterated collocation methods for Hammerstein equations, J. Comput. Appl. Math., 80, 335-349 (1997) · Zbl 0883.65115
[4] Kaneko, H.; Noren, R. D.; Xu, Y., Numerical solutions for weakly singular Hammerstein equations and their superconvergence, J. Integral Equations Appl., 4, 391-407 (1992) · Zbl 0764.65085
[5] Kaneko, H.; Padilla, P.; Xu, Y., Superconvergence of the iterated degenerate kernel method, Appl. Anal., 80, 331-351 (2001) · Zbl 1020.65099
[6] Kaneko, H.; Xu, Y., Degenerate kernel method for Hammerstein equations, Math. Comp., 56, 141-148 (1991) · Zbl 0711.65118
[7] Kaneko, H.; Xu, Y., Superconvergence of the iterated Galerkin methods for Hammerstein equations, SIAM J. Numer. Anal., 33, 1048-1064 (1996) · Zbl 0860.65138
[8] Kumar, S., Superconvergence of a collocation-type method for Hammerstein equations, IMA J. Numer. Anal., 7, 313-325 (1987) · Zbl 0637.65140
[9] Kumar, S.; Sloan, I. H., A new collocation-type method for Hammerstein integral equations, Math. Comp., 48, 585-593 (1987) · Zbl 0616.65142
[10] Kaneko, H.; Noren, R.; Xu, Y., Regularity of the solution of Hammerstein equations with weakly singular kernel, Integral Equations Operator Theory, 13, 5, 660-670 (1990) · Zbl 0706.45005
[11] Panigrahi, B. L.; Nelakanti, G., Legendre Galerkin method for weakly singular Fredholm integral equations and the corresponding eigenvalue problem, J. Appl. Math. Comput., 43, 1-2, 175-197 (2013) · Zbl 1300.65095
[12] Das, P.; Sahani, M. M.; Nelakanti, G., Legendre spectral projection methods for Urysohn integral equations, J. Comput. Appl. Math., 263, 88-102 (2014) · Zbl 1301.65130
[13] Das, P.; Sahani, M. M.; Nelakanti, G.; Long, G., Legendre Spectral projection methods for Fredholm- Hammerstein integral equations, J. Sci. Comput., 1-18 (2015)
[14] Das, P.; Nelakanti, G., Error analysis of polynomial-based multi-projection methods for a class of nonlinear Fredholm integral equations, J. Appl. Math. Comput., 1-24 (2016) · Zbl 1444.65074
[15] Mandal, M.; Nelakanti, G., Superconvergence of Legendre spectral projection methods for Fredholm-Hammerstein integral equations, J. Comput. Appl. Math., 319, 423-439 (2017) · Zbl 1360.65308
[16] R. Kress, V. Maz’ya, V. Kozlov, Linear integral equations, vol. 17, Springer, 1989.; R. Kress, V. Maz’ya, V. Kozlov, Linear integral equations, vol. 17, Springer, 1989. · Zbl 0671.45001
[17] Mikhlin, S. G., Mathematical physics, an advanced course (1970), North-Holland · Zbl 0202.36901
[18] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods, Fundamentals in Single Domains (2006), Springer · Zbl 1093.76002
[19] Tang, T.; Xu, X.; Cheng, J., On spectral methods for Volterra integral equations and the convergence analysis, J. Comput. Math., 26, 825-837 (2008) · Zbl 1174.65058
[20] Ahues, M.; Largillier, A.; Limaye, B., Spectral Computations for Bounded Operators (2001), CRC Press · Zbl 1053.47001
[21] K. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, vol. 4, 1997, Cambridge University Press.; K. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, vol. 4, 1997, Cambridge University Press. · Zbl 0899.65077
[22] Vainikko, G. M., Galerkin’s perturbation method and the general theory of approximate methods for non-linear equations, USSR Comput. Math. Math. Phys., 7, 1-41 (1967) · Zbl 0213.16201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.