×

A generalized framework for modelling ordinal data. (English) Zbl 1405.62101

Summary: In several applied disciplines, as Economics, Marketing, Business, Sociology, Psychology, Political science, Environmental research and Medicine, it is common to collect data in the form of ordered categorical observations. In this paper, we introduce a class of models based on mixtures of discrete random variables in order to specify a general framework for the statistical analysis of this kind of data. The structure of these models allows the interpretation of the final response as related to feeling, uncertainty and a possible shelter option and the expression of the relationship among these components and subjects’ covariates. Such a model may be effectively estimated by maximum likelihood methods leading to asymptotically efficient inference. We present a simulation experiment and discuss a real case study to check the consistency and the usefulness of the approach. Some final considerations conclude the paper.

MSC:

62J12 Generalized linear models (logistic models)
62F10 Point estimation

Software:

CUB; catdata
Full Text: DOI

References:

[1] Agresti A (2010) Analysis of ordinal categorical data, 2nd edn. Wiley, Hoboken · Zbl 1263.62007 · doi:10.1002/9780470594001
[2] Allik J (2014) A mixed-binomial model for Likert-type personality measure. Front Psychol 5:1-13 · doi:10.3389/fpsyg.2014.00371
[3] Corduas M (2008a) Clustering CUB models by Kullback-Liebler divergence. Proceedings of SCF-CLAFAG Meeting, ESI, Napoli, pp 245-248
[4] Corduas M (2008b) A statistical procedure for clustering ordinal data. Quad Stat 10:177-189
[5] Corduas, M.; Attanasio, M. (ed.); Capursi, V. (ed.), A study on University students’ opinions about teaching quality: a model based approach to clustering ordinal data, 67-78 (2011), Berlin · doi:10.1007/978-3-7908-2375-2_5
[6] Corduas M, Iannario M, Piccolo D (2009) A class of statistical models for evaluating services and performances. In: Bini M et al (eds) Statistical methods for the evaluation of educational services and quality of products, contribution to statistics. Physica-Verlag, Springer, Berlin, pp 99-117 · Zbl 1333.62181
[7] Cox C (1995) Location-scale cumulative odds models for ordinal data: a generalized non-linear model approach. Stat Medic 14:1191-1203 · doi:10.1002/sim.4780141105
[8] D’Elia A (2000a) The mechanism of paired comparisons in rank modelling: statistical issues and critical considerations (in Italian). Quad Stat 2:173-203
[9] D’Elia A (2000b) A shifted Binomial model for rankings. In: Nunez-Anton V, Ferreira E (eds) “Statistical Modelling”, XV international workshop on statistical modelling, Servicio Editorial de la Universidad del Pais Vasco, pp 412-416
[10] D’Elia A, Piccolo D (2005) A mixture model for preference data analysis. Comput Stat Data Anal 49:917-934 · Zbl 1429.62077 · doi:10.1016/j.csda.2004.06.012
[11] Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm (with discussion). J R Stat Soc Ser B 39:1-38 · Zbl 0364.62022
[12] Di Iorio F, Iannario M (2012) Residual diagnostics for assessing the fit of CUB models. STATISTICA LXXII, pp 163-172 · Zbl 1453.62761
[13] Gottard A, Iannario M, Piccolo D (2015) Varying uncertainty in CUB models. Submitted · Zbl 1414.62327
[14] Iannario M (2009) Fitting measures for ordinal data models. Quad Stat 11:39-72
[15] Iannario M (2012a) Modelling shelter choices in a class of mixture models for ordinal responses. Stat Meth Appl 21:1-22 · Zbl 1333.62181 · doi:10.1007/s10260-011-0176-x
[16] Iannario M (2012b) CUBE models for interpreting ordered categorical data with overdispersion. Quad Stat 14:137-140
[17] Iannario M (2012c) Preliminary estimators for a mixture model of ordinal data. Adv Data Anal Classif 6:163-184 · Zbl 1254.62004 · doi:10.1007/s11634-012-0111-5
[18] Iannario M (2012d) Hierarchical CUB models for ordinal variables. Comm Stat Theory Meth 41:3110-3125 · Zbl 1296.62067
[19] Iannario M (2014) Modelling uncertainty and overdispersion in ordinal data. Comm Stat Theory Meth 43:771-786 · Zbl 1287.62001 · doi:10.1080/03610926.2013.813044
[20] Iannario M, Piccolo D (2012a) CUB models: statistical methods and empirical evidence. In: Kenett RS, Salini S (eds) Modern analysis of customer surveys: with applications using R. Wiley, Chichester, pp 231-258
[21] Iannario M, Piccolo D (2012b) A framework for modelling ordinal data in rating surveys. In: Proceedings of joint statistical meetings, section on statistics in marketing, San Diego, California, pp 3308-3322
[22] Iannario M, Piccolo D (2015) Cumulative and CUB models for ordinal data: a comparative analysis. Submitted · Zbl 1362.60006
[23] Karlis D, Xekalaki E (2003) Choosing initial values for the EM algorithm for finite mixtures. Comput Stat Data Anal 41:577-590 · Zbl 1429.62082 · doi:10.1016/S0167-9473(02)00177-9
[24] Krosnick JA (1991) Response strategies for coping with the cognitive demands of attitude measures in surveys. Appl Cogn Psychol 5:213-236 · doi:10.1002/acp.2350050305
[25] Laakso M, Taagepera R (1989) Effective number of parties: a measure with application to West Europe. Compar Polit Stud 12:3-27
[26] McCullagh P (1980) Regression models for ordinal data (with discussion). J R Stat Soc Ser B 42:109-142 · Zbl 0483.62056
[27] McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman and Hall, London · Zbl 0744.62098 · doi:10.1007/978-1-4899-3242-6
[28] McLachlan G, Krishnan T (2008) The EM algorithm and extensions, 2nd edn. Wiley, New York · Zbl 1165.62019 · doi:10.1002/9780470191613
[29] McLachlan G, Peel GJ (2000) Finite mixture models. Wiley, New York · Zbl 0963.62061 · doi:10.1002/0471721182
[30] Manisera M, Zuccolotto P (2014a) Modeling “don’t know” responses in rating scales. Patt Recogn Lett 45:226-234 · doi:10.1016/j.patrec.2014.04.012
[31] Manisera M, Zuccolotto P (2014b) Modeling rating data with nonlinear CUB models. Comput Stat Data Anal 78:100-118 · Zbl 1506.62123
[32] Peterson B, Harrell FE (1990) Partial proportional odds models for ordinal responses variables. Appl Stat 39:205-217 · Zbl 0707.62154 · doi:10.2307/2347760
[33] Nelder JA, Wedderburn RWM (1972) Generalized linear models. J R Stat Soc Ser A 135:370-384 · doi:10.2307/2344614
[34] Piccolo D (2003) On the moments of a mixture of uniform and shifted binomial random variables. Quad Stat 5:85-104
[35] Piccolo D (2006) Observed information matrix for MUB models. Quad Stat 8:33-78
[36] Piccolo D (2015) Statistical issues for CUBE models with covariates. Comm Stat Theory Meth 44. doi:10.1080/03610926.2013.821487
[37] Piccolo D, D’Elia A (2008) A new approach for modelling consumers’ preferences. Food Qual Pref 19:247-259 · doi:10.1016/j.foodqual.2007.07.002
[38] Powers DA, Xie Y (2000) Statistical methods for categorical data analysis. Academic Press, San Diego, CA · Zbl 0967.62101
[39] Serfling RJ (1980) Approximation theorems of mathematical statistics. Wiley, New York · Zbl 0538.62002 · doi:10.1002/9780470316481
[40] Simon HA (1957) Models of man. Wiley, New York
[41] Tourangeau R, Rips LJ, Rasinski K (2000) The psychology of survey response. Cambridge University Press, Cambridge · doi:10.1017/CBO9780511819322
[42] Tutz G (2012) Regression for categorical data. Cambridge University Press, Cambridge · Zbl 1304.62021
[43] Zhou H, Lange K (2009) Rating movies and rating the raters who rate them. Am Stat 63:297-307 · doi:10.1198/tast.2009.08278
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.