×

Fourth-order fractional diffusion model of thermal grooving: integral approach to approximate closed form solution of the Mullins model. (English) Zbl 1405.26006

Summary: A multiple integration technique of the integral-balance method allowing solving high-order subdiffusion diffusion equations is presented in this article. The new method termed multiple-integral balance method (MIM) is based on multiple integration procedures with respect to the space coordinate. MIM is a generalization of the widely applied heat-balance integral method of Goodman and the double integration method of Volkov. The method is demonstrated by a solution of the linear subdiffusion model of Mullins for thermal grooving by surface diffusion.

MSC:

26A33 Fractional derivatives and integrals
40C10 Integral methods for summability
Full Text: DOI

References:

[1] M. Abu Hamed and A.A. Nepomnyashchy, Groove growth by surface subdiffusion. Physica D: Nonlinear Phenom.298-299 (2015) 142-47. · Zbl 1364.76212
[2] P. Broadbridge, Exact solvability of the Mullins nonlinear diffusion model of groove development. J. Math. Phys.30 (1989) 1648-1651. · Zbl 0693.35091 · doi:10.1063/1.528300
[3] P. Broadbridge, Exact solution of a degenerate fully nonlinear diffusion equation. Z. Angew. Math. Phys.55 (2004) 534-538. · Zbl 1058.35122 · doi:10.1007/s00033-004-3015-1
[4] A. Kitada, On properties of a classical solution of nonlinear mass transport equation u_{t} = u_{xx}/1 + u_{t}\^{}{2}. J. Math. Phys.27 (1986) 1391-1392. · Zbl 0606.35043 · doi:10.1063/1.527096
[5] T.R. Goodman, The heat balance integral and its application to problems involving a change of phase. Trans. ASME80 (1958) 335-342.
[6] J. Hristov, Multiple integral-balance method: Basic idea and an example with Mullins model of thermal grooving. Therm. Sci.21 (2017) 1555-1560. · doi:10.2298/TSCI170410124H
[7] J. Hristov, The heat-balance integral method by a parabolic profile with unspecified exponent: analysis and benchmark exercises. Therm. Sci.13 (2009) 27-48. · doi:10.2298/TSCI0902027H
[8] J. Hristov, Integral solutions to transient nonlinear heat (mass) diffusion with a power-law diffusivity: a semi-infinite medium with fixed boundary conditions. Heat Mass Transf.52 (2016) 635-655. · doi:10.1007/s00231-015-1579-2
[9] J. Hristov, Double integral-balance method to the fractional subdiffusion equation: approximate solutions, optimization problems to be resolved and numerical simulations. J. Vib. Control23 (2017) 2795-2818. · Zbl 1375.35602 · doi:10.1177/1077546315622773
[10] J. Hristov, Approximate solutions to time-fractional models by integral balance approach, in Fractional Dynamics, edited by C. Cattani, H.M. Srivastava, X.-J. Yang. De Gruyter Open (2015) 78-109.
[11] J. Hristov, Integral-balance solution to nonlinear subdiffusion equation, in Frontiers in Fractional Calculus, edited by S. Bhalekar. Bentham Publishing (2017) 71-106.
[12] J. Hristov, Subdiffusion model with time-dependent diffusion coefficient: integral-balance solution and analysis. Therm. Sci.21 (2017) 69-80. · doi:10.2298/TSCI160427247H
[13] P.A. Martin, Thermal grooving by surface diffusion: Mullins revisited and extended to multiple grooves. Q. J. Appl. Math.67 (2009) 125-136. · Zbl 1169.35398 · doi:10.1090/S0033-569X-09-01086-4
[14] S.L. Mitchell and T.G. Myers, Application of standard and refined heat-balance integral methods to one-dimensional Stefan problems. SIAM Rev.52 (2010) 57-86. · Zbl 1188.80004 · doi:10.1137/080733036
[15] T.J. Myers, Optimizing the exponent in the heat balance and refined integral methods. Int. Commun. Heat Mass Transf.36 (2009) 143-147. · doi:10.1016/j.icheatmasstransfer.2008.10.013
[16] W.W. Mullins, Theory of thermal grooving. J. Appl. Phys.28 (1957) 333-339. · doi:10.1063/1.1722742
[17] K.B. Oldham and J. Spanier. The fractional Calculus. Academic Press, New York, USA (1974). · Zbl 0292.26011
[18] I. Podlubny, Fractional Differential Equations. Academic Press, New York (1999). · Zbl 0924.34008
[19] W.M. Robertson, Grain-boundary growing by surface diffusion for finite slopes. J. Appl. Phys.42 (1971) 463-467. · doi:10.1063/1.1659625
[20] S.K. Sahu, P.K. Das and S. Bhattacharyya, A comprehensive analysis of conduction-controlled rewetting by the Heat balance Integral Method. Int. J. Heat Mass Transf.49 (2006) 4978-4986. · Zbl 1105.80006 · doi:10.1016/j.ijheatmasstransfer.2006.05.038
[21] V.N. Volkov and V.K. Li-Orlov, A Refinement of the integral method in solving the heat conduction equation. Heat Transf. Sov. Res.2 (1970) 41-47.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.