×

Unipotent elements and generalized exponential maps. (English) Zbl 1405.20041

Let \(G\) be a linear algebraic group over an algebraically closed field \(\Bbbk\) of characteristic \(p>0\) and let \(\mathfrak{g}\) be its associated Lie algebra. This paper defines and studies ‘generalized exponential maps,’ which are Springer isomorphisms between the unipotent elements of \(G\) and the nilpotent elements of \(\mathfrak{g}\) which behave similarly to the usual exponential map. In particular, it is demonstrated that such maps exist over \(\mathbb{Z}_{(p)}\). The paper uses these maps to address the “saturation problem” for certain unipotent elements of \(G\). Furthermore, a full parameterization of all generalized exponential maps for \(G\) is given.
After addressing preliminaries in Section 2, Section 3 constructs all Springer isomorphisms for \(G\). Using \(\mathrm{SL}_n\) as a model, where every Springer isomorphism is given by \(X \mapsto I_n + a_1 X + \dots + a_{n-1}X^{n-1}, a_1 \in \Bbbk^\times\), the author shows that the variety of Springer isomorphisms for \(G\) identifies with the variety \(\Bbbk^\times \times \Bbbk^{r-1}\), where \(r\) is the rank of \(G\). To obtain an operation analogous to \(X\mapsto X^i\), the next construction is of “multiplicative power” morphisms. Using representations (natural for classical type and adjoint for exceptional type) which have the feature that the trace form on the matrix algebra restricts to a non-degenerate symmetric bilinear form on the embedded Lie algebra, the author obtains multilinear maps \((\mathfrak{g}_{\mathbb{Z}_{(p)}})^i \rightarrow \mathfrak{g}_{\mathbb{Z}_{(p)}}\) and uses them to define the multiplicative power maps on \(\mathfrak{g}_{\mathbb{Z}_{(p)}}\).
Section 4 defines and constructs generalized exponential maps for \(G\) of all types. First, using a closed embedding of affine group schemes \(G_{\mathbb{Z}_{(p)}}\rightarrow \mathrm{GL}_{n,\mathbb{Z}_{(p)}}\) and the Artin-Hasse exponential power series applied to \(\mathfrak{gl}_{n,\mathbb{Z}_{(p)}}\), the author builds a generalized exponential map for \(G\) of classical type. The argument is then modified to obtain generalized exponential maps for types E, F, and G.
Section 5 takes a nilpotent element \(X \in \mathfrak{g}\) and using any generalized exponential map obtains a decomposition of the connected center of the centralizer, \(Z(C_G(X))^0\), into a product of truncated Witt groups. This decomposition holds as an isomorphism of algebraic varieties thus strengthening a result of G. M. Seitz [J. Algebra 279, No. 1, 226–259 (2004; Zbl 1078.20051)]. The author also discusses how if the root system of \(G\) is not of type \(\mathrm{D}_{p^n+1}\) then the Witt groups occurring in the decomposition do not depend on the chosen generalized exponential map.
Section 6 parameterizes all generalized exponential maps for \(G\) by fixing one such map and showing how any other can be expressed in terms of the fixed map. The parameterization then arises from analyzing conditions on the coefficients that appear in the expression. Here, again groups \(G\) with root system of type D\(_{p^n+1}\) are an exceptional case.
Lastly, Section 7 discusses the case when the covering map \(G_{\mathrm{sc}} \rightarrow G\) (where \(G_{\mathrm{sc}}\) is the simply connected group isogenous to \(G\)) is not separable, which only occurs in type A. Using observations of Serre and Jay Taylor, the author demonstrates how there are no Springer isomorphisms for \(\mathrm{PGL}_2\) in characteristic 2. The paper concludes with an appendix by Jay Taylor containing computations related to the \(\mathrm{PGL}_2\) example.

MSC:

20G07 Structure theory for linear algebraic groups
20G05 Representation theory for linear algebraic groups
14L05 Formal groups, \(p\)-divisible groups

Citations:

Zbl 1078.20051

References:

[1] Baeza, R., Quadratic forms over semilocal rings, Lecture Notes in Mathematics, vol. 655, (1978), Springer-Verlag Berlin · Zbl 0382.10014
[2] Bardsley, P.; Richardson, R. W., Etale slices for algebraic transformation groups in characteristic p, Proc. Lond. Math. Soc. (3), 51, 2, 295-317, (1985) · Zbl 0604.14037
[3] Carlson, J.; Lin, Z.; Nakano, D., Support varieties for modules over Chevalley groups and classical Lie algebras, Trans. Amer. Math. Soc., 360, 1870-1906, (2008) · Zbl 1182.20039
[4] Dieudonné, J., On the Artin-Hasse exponential series, Proc. Amer. Math. Soc., 8, 210-214, (1957) · Zbl 0079.05902
[5] Friedlander, E., Restrictions to \(G(\mathbb{F}_p)\) and \(G_{(r)}\) of rational G-modules, Compos. Math., 147, 6, 1955-1978, (2011) · Zbl 1243.20057
[6] Jantzen, J. C., Representations of algebraic groups, Mathematical Surveys and Monographs, vol. 107, (2003), American Mathematical Society · Zbl 1034.20041
[7] Jantzen, J. C., Nilpotent orbits in representation theory, Progr. Math., vol. 228, (2004), Birkhäuser Boston · Zbl 1169.14319
[8] Kostant, B., The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math., 81, 973-1032, (1959) · Zbl 0099.25603
[9] Lawther, R.; Testerman, D., Centres of centralizers of unipotent elements in simple algebraic groups, Mem. Amer. Math. Soc., 210, 988, (2011) · Zbl 1266.20061
[10] McNinch, G., Abelian unipotent subgroups of reductive groups, J. Pure Appl. Algebra, 167, 2-3, 269-300, (2002) · Zbl 0999.20035
[11] McNinch, G., Optimal \(S L(2)\)-homomorphisms, Comment. Math. Helv., 80, 2, 391-426, (2005) · Zbl 1097.20040
[12] McNinch, G.; Testerman, D., Nilpotent centralizers and Springer isomorphisms, J. Pure Appl. Algebra, 213, 7, 1346-1363, (2009) · Zbl 1177.20055
[13] Pevtsova, J.; Stark, J., Varieties of elementary subalgebras of maximal dimension for modular Lie algebras
[14] Premet, A., Nilpotent orbits in good characteristic and the kempf-rousseau theory, J. Algebra, 260, 1, 338-366, (2003) · Zbl 1020.20031
[15] Proud, R., Witt groups and unipotent elements in algebraic groups, Proc. Lond. Math. Soc. (3), 82, 647-675, (2001) · Zbl 1026.20027
[16] R. Proud, On centralizers of unipotent elements in algebraic groups, unpublished manuscript.; R. Proud, On centralizers of unipotent elements in algebraic groups, unpublished manuscript. · Zbl 1026.20027
[17] Seitz, G., Unipotent centralizers in algebraic groups, J. Algebra, 279, 226-259, (2004) · Zbl 1078.20051
[18] Serre, J.-P., Sur la semi-simplicite des produits tensoriels de representations de groupes, Invent. Math., 116, 513-530, (1994) · Zbl 0816.20014
[19] Serre, J.-P., Exemples de plongements des groupes \(P S L_2(\mathbb{F}_p)\) dans des groupes de Lie simples, Invent. Math., 124, 1-3, 525-562, (1996) · Zbl 0877.20033
[20] Serre, J.-P., Algebraic groups and class fields, Graduate Texts in Mathematics, vol. 117, (1988), Springer New York · Zbl 0703.14001
[21] Sobaje, P., Springer isomorphisms in characteristic p, Transform. Groups, 20, 4, 1141-1153, (2015) · Zbl 1338.14048
[22] Springer, T. A., Linear algebraic groups, Progr. Math., vol. 9, (1998), Birkhäuser · Zbl 0927.20024
[23] Springer, T. A., Some arithmetical results on semi-simple Lie algebras, Inst. Hautes Etudes Sci. Publ. Math., 30, 115-142, (1966) · Zbl 0156.27002
[24] Springer, T. A., The unipotent variety of a semi-simple group, (Algebraic Geometry (International Colloquium, (1968), Tata Institute of Fundamental Research Bombay), 373-391, (1969), Oxford University Press London · Zbl 0195.50803
[25] Suslin, A.; Friedlander, E.; Bendel, C., Infinitesimal 1-parameter subgroups and cohomology, J. Amer. Math. Soc., 10, 693-728, (1997) · Zbl 0960.14023
[26] Taylor, J., Generalized Gelfand-graev representations in small characteristics, Nagoya Math. J., 224, 1, 93-167, (2016) · Zbl 1372.20042
[27] Testerman, D., \(A_1\)-type overgroups of elements of order p in semisimple algebraic groups and the associated finite groups, J. Algebra, 177, 34-76, (1995) · Zbl 0857.20025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.