×

Level structures on abelian varieties, Kodaira dimensions, and Lang’s conjecture. (English) Zbl 1405.14115

Let \(K\) be a number field. Lang’s conjecture says that if \(X\) is a positive-dimensional algebraic variety of general type over \(K\), then \(X(K)\) is not Zariski-dense in \(\mathbb{C}\). Let \(p\) be a prime number, and \(g\) a positive integer. Assuming Lang’s conjecture, the authors show that there exists a positive integer \(r\) such that no principally polarized \(g\)-dimensional abelian variety over \(K\) has full level-\(p^r\) structure. The authors rely on a result of K. Zuo [Asian J. Math. 4, No. 1, 279–301 (2000; Zbl 0983.32020)] to show that certain subvarieties of the moduli space of principally polarized abelian varieties of dimension \(g\) with level-\(m\) structure are of general type for sufficiently large \(m\), and thus satisfy the hypotheses of Lang’s conjecture. They point out that a recent result of Y. Brunebarbe [“A strong hyperbolicity property of locally symmetric varieties”, Preprint, arXiv:1606.03972] leads to stronger results. They also point out how the restriction to principally polarized abelian varieties may be removed, leaving the details to the reader.
Reviewer’s note: The statement of the main theorem in the published abstract omits the essential hypothesis that the abelian varieties be \(g\)-dimensional.

MSC:

14K10 Algebraic moduli of abelian varieties, classification
14K15 Arithmetic ground fields for abelian varieties
11G18 Arithmetic aspects of modular and Shimura varieties
11G10 Abelian varieties of dimension \(> 1\)

Citations:

Zbl 0983.32020

References:

[1] Abramovich, D.; Várilly-Alvarado, A., Level structures on Abelian varieties and Vojta’s conjecture, Compos. Math., 153, 2, 373-394 (2017), With an appendix by Keerthi Madapusi Pera · Zbl 1386.14164
[2] Ash, A.; Mumford, D.; Rapoport, M.; Tai, Y.-S., Smooth Compactifications of Locally Symmetric Varieties, Cambridge Mathematical Library (2010), Cambridge University Press: Cambridge University Press Cambridge, With the collaboration of Peter Scholze · Zbl 1209.14001
[3] B. Bakker, J. Tsimerman, The geometric torsion conjecture for abelian varieties with real multiplication, J. Differential Geom., to appear.; B. Bakker, J. Tsimerman, The geometric torsion conjecture for abelian varieties with real multiplication, J. Differential Geom., to appear. · Zbl 1386.14093
[4] Brunebarbe, Y., A strong hyperbolicity property of locally symmetric varieties (June 2016), ArXiv e-prints
[5] Brylinski, J.-L., Propriétés de ramification à l’infini du groupe modulaire de Teichmüller, Ann. Sci. Éc. Norm. Supér. (4), 12, 3, 295-333 (1979), With an appendix in English by Ken Baclawski · Zbl 0432.14004
[6] Cadoret, A., The \(ℓ\)-primary torsion conjecture for Abelian surfaces with real multiplication, (Algebraic Number Theory and Related Topics 2010. Algebraic Number Theory and Related Topics 2010, RIMS Kôkyûroku Bessatsu, vol. B32 (2012), Res. Inst. Math. Sci. (RIMS): Res. Inst. Math. Sci. (RIMS) Kyoto), 195-204 · Zbl 1334.11044
[7] Cadoret, A.; Tamagawa, A., Uniform boundedness of \(p\)-primary torsion of Abelian schemes, Invent. Math., 188, 1, 83-125 (2012) · Zbl 1294.14011
[8] Cadoret, A.; Tamagawa, A., Note on torsion conjecture, (Geometric and Differential Galois Theories. Geometric and Differential Galois Theories, Sémin. Congr., vol. 27 (2013), Soc. Math. France: Soc. Math. France Paris), 57-68
[9] Caporaso, L.; Harris, J.; Mazur, B., Uniformity of rational points, J. Amer. Math. Soc., 10, 1, 1-35 (1997) · Zbl 0872.14017
[10] Chiodo, A.; Eisenbud, D.; Farkas, G.; Schreyer, F.-O., Syzygies of torsion bundles and the geometry of the level \(ℓ\) modular variety over \(M_g\), Invent. Math., 194, 73-118 (October 2013) · Zbl 1284.14006
[11] Debarre, O., Higher-Dimensional Algebraic Geometry, Universitext (2001), Springer-Verlag: Springer-Verlag New York · Zbl 0978.14001
[12] Ellenberg, J. S.; Hall, C.; Kowalski, E., Expander graphs, gonality, and variation of Galois representations, Duke Math. J., 161, 7, 1233-1275 (2012) · Zbl 1262.14021
[13] Faltings, G., Diophantine approximation on Abelian varieties, Ann. of Math. (2), 133, 3, 549-576 (1991) · Zbl 0734.14007
[14] Faltings, G., The general case of S. Lang’s conjecture, (Barsotti Symposium in Algebraic Geometry. Barsotti Symposium in Algebraic Geometry, Abano Terme, 1991. Barsotti Symposium in Algebraic Geometry. Barsotti Symposium in Algebraic Geometry, Abano Terme, 1991, Perspect. Math., vol. 15 (1994), Academic Press: Academic Press San Diego, CA), 175-182 · Zbl 0823.14009
[15] Faltings, G.; Chai, C.-L., Degeneration of Abelian Varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 22 (1990), Springer-Verlag: Springer-Verlag Berlin, With an appendix by David Mumford · Zbl 0744.14031
[16] Hulek, K., Nef divisors on moduli spaces of Abelian varieties, (Complex Analysis and Algebraic Geometry (2000), de Gruyter: de Gruyter Berlin), 255-274 · Zbl 1079.14052
[17] Hwang, J.-M.; To, W.-K., Uniform boundedness of level structures on Abelian varieties over complex function fields, Math. Ann., 335, 2, 363-377 (2006) · Zbl 1090.14013
[18] Iitaka, S., Algebraic Geometry, Graduate Texts in Mathematics, vol. 76 (1982), Springer-Verlag: Springer-Verlag New York-Berlin, An Introduction to Birational Geometry of Algebraic Varieties, North-Holland Mathematical Library, vol. 24 · Zbl 0491.14006
[19] Kamienny, S., Torsion points on elliptic curves and \(q\)-coefficients of modular forms, Invent. Math., 109, 2, 221-229 (1992) · Zbl 0773.14016
[20] Kamienny, S.; Mazur, B., Rational torsion of prime order in elliptic curves over number fields, Astérisque, 228, 3, 81-100 (1995), With an appendix by A. Granville, Columbia University Number Theory Seminar, New York, 1992 · Zbl 0846.14012
[21] Keel, S.; Mori, S., Quotients by groupoids, Ann. of Math. (2), 145, 1, 193-213 (1997) · Zbl 0881.14018
[22] Kempf, G.; Faye Knudsen, F.; Mumford, D.; Saint-Donat, B., Toroidal Embeddings. I, Lecture Notes in Mathematics, vol. 339 (1973), Springer-Verlag: Springer-Verlag Berlin-New York · Zbl 0271.14017
[23] Lang, S., Hyperbolic and Diophantine analysis, Bull. Amer. Math. Soc. (N.S.), 14, 2, 159-205 (1986) · Zbl 0602.14019
[24] Lazarsfeld, R., Positivity in Algebraic Geometry. I, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 48 (2004), Springer-Verlag: Springer-Verlag Berlin · Zbl 1093.14501
[25] Lazarsfeld, R., Positivity in Algebraic Geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 49 (2004), Springer-Verlag: Springer-Verlag Berlin · Zbl 1093.14500
[26] Manin, Ju. I., The \(p\)-torsion of elliptic curves is uniformly bounded, Izv. Akad. Nauk SSSR Ser. Mat., 33, 459-465 (1969) · Zbl 0191.19601
[27] Mazur, B., Modular curves and the Eisenstein ideal, Publ. Math. Inst. Hautes Études Sci., 47, 33-186 (1977) · Zbl 0394.14008
[28] McKinnie, K.; Sawon, J.; Tanimoto, S.; Várilly-Alvarado, A., Brauer groups on K3 surfaces and arithmetic applications, (Brauer Groups and Obstruction Problems. Brauer Groups and Obstruction Problems, Progr. Math., vol. 320 (2017), Birkhäuser/Springer: Birkhäuser/Springer Cham), 177-218 · Zbl 1376.14040
[29] Merel, L., Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math., 124, 1-3, 437-449 (1996) · Zbl 0936.11037
[30] Mumford, D., Hirzebruch’s proportionality theorem in the noncompact case, Invent. Math., 42, 239-272 (1977) · Zbl 0365.14012
[31] Nadel, A. M., The nonexistence of certain level structures on Abelian varieties over complex function fields, Ann. of Math. (2), 129, 1, 161-178 (1989) · Zbl 0675.14018
[32] Noguchi, J., Moduli space of Abelian varieties with level structure over function fields, Internat. J. Math., 2, 2, 183-194 (1991) · Zbl 0741.14023
[33] Popa, M.; Schnell, C., Viehweg’s hyperbolicity conjecture for families with maximal variation, Invent. Math., 208, 3, 677-713 (2017) · Zbl 1375.14043
[34] Revêtements étales et groupe fondamental (SGA 1), Doc. Math. (Paris), vol. 3 (2003), Société Mathématique de France: Société Mathématique de France Paris, Séminaire de géométrie algébrique du Bois Marie 1960-1961 (Algebraic Geometry Seminar of Bois Marie 1960-1961), directed by A. Grothendieck, with two papers by M. Raynaud, updated and annotated reprint of the 1971 original Lecture Notes in Math., vol. 224, Springer, Berlin. MR0354651 (50 #7129) · Zbl 1039.14001
[35] Rousseau, E., Hyperbolicity, automorphic forms and Siegel modular varieties, Ann. Sci. Éc. Norm. Supér. (4), 49, 1, 249-255 (2016) · Zbl 1361.32032
[36] Shatz, S. S., Group schemes, formal groups, and \(p\)-divisible groups, (Arithmetic Geometry. Arithmetic Geometry, Storrs, Conn., 1984 (1986), Springer: Springer New York), 29-78 · Zbl 0603.14033
[37] Ullmo, E.; Yafaev, A., Points rationnels des variétés de Shimura: un principe du “tout ou rien”, Math. Ann., 348, 3, 689-705 (2010) · Zbl 1264.11052
[38] Várilly-Alvarado, A.; Viray, B., Abelian \(n\)-division fields of elliptic curves and Brauer groups of product Kummer & Abelian surfaces, Forum Math., Sigma, 5, Article e26 pp. (2017), 1-42 · Zbl 1408.14077
[39] Vojta, P., A more general abc conjecture, Int. Math. Res. Not. IMRN, 21, 1103-1116 (1998) · Zbl 0923.11059
[40] Zarhin, j. G., A remark on endomorphisms of Abelian varieties over function fields of finite characteristic, Izv. Akad. Nauk SSSR Ser. Mat., 38, 471-474 (1974) · Zbl 0332.14016
[41] Zuo, K., On the negativity of kernels of Kodaira-Spencer maps on Hodge bundles and applications, Asian J. Math., 4, 1, 279-301 (2000), Kodaira’s issue · Zbl 0983.32020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.