×

On a classical correspondence of real K3 surfaces. (English. Russian original) Zbl 1405.14094

Izv. Math. 82, No. 4, 662-693 (2018); translation from Izv. Ross. Akad. Nauk, Ser. Mat. 82, No. 4, 18-52 (2018).
Let \(P\) be a generic net of quadrics in \(\mathbb{P}^5\). Its spectral curve is a smooth sextic curve \(C\subset P\cong\mathbb{P}^2\), and the double covering \(\hat S\to P\) ramified at \(C\) is a \(K3\)-surface. On the other hand, the fundamental locus of \(P\) is also a \(K3\)-surface (triquadric) \(S\subset\mathbb{P}^5\); clearly, \(S\) determines \(P\). The assignment \(S\to\hat S\) is called in the paper the classical correspondence for \(K3\)-surfaces, see, e.g., [C. Madonna and V. V. Nikulin, Proc. Steklov Inst. Math. 241, 120–153 (2003; Zbl 1076.14046); Izv. Math. 72, No. 3, 497–508 (2008; Zbl 1162.14025)].
The author studies this correspondence in the case where \(P\) (and, hence, also \(S\) and \(\hat S\)) are real. One of the principal results is Theorem 0.1 stating that {\(S\) and \(\hat S\) are deformation equivalent in the class of abstract real \(K3\)-surfaces if and only if \([\mathbb{R} H]=0\) in \(H_1(\mathbb{R} S;\mathbb{F}_2)\)}, where \(H\) is a generic real hyperplane section of \(S\). More generally, the author determines the deformation class of \(\hat S\) (in the form of its Nikulin’s invariants, see [V. V. Nikulin, Math. USSR, Izv. 14, 103–167 (1980; Zbl 0427.10014)]) in terms of that of \(S\); a list of the invariants of \(S\) and corresponding invariants of \(\hat S\) is the contents of Theorem 0.2.

MSC:

14J28 \(K3\) surfaces and Enriques surfaces
14P25 Topology of real algebraic varieties
Full Text: DOI

References:

[1] Agrachev, A. A., Topology of quadratic maps and Hessians of smooth maps, J. Soviet Math., 26, 3, 85-124, (1988) · Zbl 0719.58006 · doi:10.1007/BF02133177
[2] Agrachev, A. A., Homology of the intersections of real quadrics, Dokl. Akad. Nauk SSSR, 299, 5, 1033-1036, (1988) · Zbl 0696.55004
[3] Agrachev, A.; Lerario, A., Systems of quadratic inequalities, Proc. Lond. Math. Soc. (3), 105, 3, 622-660, (2012) · Zbl 1277.14046 · doi:10.1112/plms/pds010
[4] Dixon, A. C., Note on the reduction of a ternary quantic to symmetrical determinant, Proc. Cambridge Philos. Soc., 11, 350-351, (1902) · JFM 33.0140.04
[5] Tyurin, A. N., On intersections of quadrics, Uspekhi Mat. Nauk, 30, 6-186, 51-99, (1975) · Zbl 0328.14014 · doi:10.1070/RM1975v030n06ABEH001530
[6] Atiyah, M. F., Riemann surfaces and spin structures, Ann. Sci. École Norm. Sup. (4), 4, 1, 47-62, (1971) · Zbl 0212.56402 · doi:10.24033/asens.1205
[7] Gross, B.; Harris, J., Real algebraic curves, Ann. Sci. École Norm. Sup. (4), 14, 2, 157-182, (1981) · Zbl 0533.14011 · doi:10.24033/asens.1401
[8] Viro, O. Ya., Real plane algebraic curves: constructions with controlled topology, Algebra i Analiz, 1, 5, 1-73, (1989) · Zbl 0732.14026
[9] Rokhlin, V. A., Complex topological characteristics of real algebraic curves, Uspekhi Mat. Nauk, 33, 5-203, 77-89, (1978) · Zbl 0437.14013 · doi:10.1070/RM1978v033n05ABEH002514
[10] Krasnov, V. A., Real, Izv. Ross. Akad. Nauk Ser. Mat., 77, 1, 33-48, (2013) · Zbl 1294.14021 · doi:10.4213/im7801
[11] Madonna, C. G.; Nikulin, V. V., On a classical correspondence between, Proc. Steklov Inst. Math., 241, 132-168, (2003) · Zbl 1076.14046
[12] Mukai, S., On the moduli space of bundles on, Vector bundles on algebraic varieties, 11, 341-413, (1987) · Zbl 0674.14023
[13] Arnol’d, V. I., Distribution of ovals of the real plane of algebraic curves, of involutions of four-dimensional smooth manifolds, and the arithmetic of integer-valued quadratic forms, Funktsional. Anal. i Prilozhen., 5, 3, 1-9, (1971) · Zbl 0268.53001 · doi:10.1007/BF01078120
[14] Nikulin, V. V., Integral symmetric bilinear forms and some of their applications, Izv. Akad. Nauk SSSR Ser. Mat., 43, 1, 111-177, (1979) · Zbl 0408.10011 · doi:10.1070/IM1980v014n01ABEH001060
[15] Nikulin, V. V., On the connected components of moduli of real polarized, Izv. Ross. Akad. Nauk Ser. Mat., 72, 1, 99-122, (2008) · Zbl 1144.14025 · doi:10.4213/im1143
[16] Nikulin, V. V.; Saito, S., Real, Proc. London Math. Soc. (3), 90, 3, 591-654, (2005) · Zbl 1078.14053 · doi:10.1112/S0024611505015212
[17] Kharlamov, V. M., The topological type of nonsingular surfaces in, Funktsional. Anal. i Prilozhen., 10, 4, 55-68, (1976) · Zbl 0351.14030 · doi:10.1007/BF01076029
[18] Khalid, M., On, J. Reine Angew. Math., 2005, 589, 57-78, (2005) · Zbl 1083.14041 · doi:10.1515/crll.2005.2005.589.57
[19] Krasnov, V. A., On equivariant Grothendieck cohomology of a real algebraic variety, and its applications, Izv. Ross. Akad. Nauk Ser. Mat., 58, 3, 36-52, (1994) · Zbl 0843.14024 · doi:10.1070/IM1995v044n03ABEH001608
[20] Vinnikov, V., Self-adjoint determinantal representations of real plane curves, Math. Ann., 296, 3, 453-479, (1993) · Zbl 0789.14029 · doi:10.1007/BF01445115
[21] Degtyarev, A.; Itenberg, I.; Kharlamov, V., On the number of components of a complete intersection of real quadrics, Perspectives in analysis, geometry, and topology, 296, 81-107, (2012) · Zbl 1266.14046 · doi:10.1007/978-0-8176-8277-4_5
[22] Atiyah, M. F., K-theory, (1967), Benjamin: Benjamin, New York– Amsterdam · Zbl 0159.53302
[23] Krasnov, V. A., On real quadric line complexes, Izv. Ross. Akad. Nauk Ser. Mat., 74, 6, 157-182, (2010) · Zbl 1204.14028 · doi:10.4213/im4060
[24] Kalinin, I. O., Cohomological characteristics of real projective hypersurfaces, Algebra i Analiz, 3, 2, 91-110, (1991) · Zbl 0751.14035
[25] Degtyarev, A.; Kharlamov, V., Distribution of the components of a real Enriques surface, (1995)
[26] Degtyarev, A.; Itenberg, I.; Kharlamov, V., Lecture Notes in Math., 1746, (2000), Springer-Verlag: Springer-Verlag, Berlin · Zbl 0963.14033 · doi:10.1007/BFb0103960
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.