×

A geometric approach to orthogonal Higgs bundles. (English) Zbl 1405.14035

This paper studies the geometry of the moduli space of \(\mathrm{SO}(p+1,p)\)-Higgs bundles in the moduli space of \(\mathrm{SO}(2p+1,\mathbb{C})\)-Higgs bundles on a Riemann surface of genus greater than or equal to \(2\).
In particular, using the correspondence with \(\mathrm{Sp}(2p,\mathbb{C})\)-Higgs bundles due to Langlands duality, the author obtains that the intersection of the moduli space of \(\mathrm{SO}(p+1,p)\)-Higgs bundles with the regular fibres of \(\mathrm{SO}(2p+1,\mathbb{C})\)-Hitchin fibration is given by two copies of a quotient of \(\mathrm{Prym}(S,S/\sigma)[2]\), where \(S\) is the associated spectral curve over \(\Sigma\) and \(\sigma\) is a natural involution.
Another significant result in the paper, obtained by the use of KO-theory, is the computation of the Stiefel-Whitney classes of an \(\mathrm{SO}(p+1,p)\)-Higgs bundle in terms of its spectral data.
The article gives also a natural stratification of the smooth loci of the moduli space of \(\mathrm{SO}(p+1,p)\)-Higgs bundles.

MSC:

14D20 Algebraic moduli problems, moduli of vector bundles
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)
14H70 Relationships between algebraic curves and integrable systems
14P25 Topology of real algebraic varieties
20C33 Representations of finite groups of Lie type
53C07 Special connections and metrics on vector bundles (Hermite-Einstein, Yang-Mills)

References:

[1] Aparicio Arroyo, M.: The geometry of SO \((p,q)\)-Higgs bundles. Ph.D., Universidad de Salamanca (2009). https://gredos.usal.es/jspui/bitstream/10366/76395/1/DMA_Aparicio_Arroyo_M_La_geometria.pdf
[2] Atiyah, MF, Riemann surfaces and spin structures, Ann. Sci. École Norm. Super., 4, 47-62, (1971) · Zbl 0212.56402 · doi:10.24033/asens.1205
[3] Baraglia, D.; Schaposnik, LP, Real structures on moduli spaces of Higgs bundles, Adv. Theor. Math. Phys., 20, 525-551, (2016) · Zbl 1372.81165 · doi:10.4310/ATMP.2016.v20.n3.a2
[4] Baraglia, David; Schaposnik, Laura P., Monodromy of rank 2 twisted Hitchin systems and real character varieties, Transactions of the American Mathematical Society, 370, 5491-5534, (2018) · Zbl 1397.14043 · doi:10.1090/tran/7144
[5] Baraglia, D., Schaposnik, L.P.: Cayley and Langlands type correspondences for orthogonal Higgs bundles (2017). arXiv:1708.08828
[6] Beauville, A.; Narasimhan, MS; Ramanan, S., Spectral curves and the generalised theta divisor, J. Reine Angew. Math., 398, 169-179, (1989) · Zbl 0666.14015
[7] Collier, B.P.: Finite Order Automorphisms of Higgs Bundles: Theory and Application. Ph.D. Thesis, University of Illinois at Urbana-Champaign (2016). http://hdl.handle.net/2142/90563
[8] Gothen, P.B.: The Topology of Higgs Bundle Moduli Spaces. Ph.D. Thesis, University of Warwick (1995). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.519.1543&rep=rep1&type=pdf
[9] Gothen, PB, Components of spaces of representations and stable triples, Topology, 40, 823-850, (2001) · Zbl 1066.14012 · doi:10.1016/S0040-9383(99)00086-5
[10] Gothen, P.B.: Higgs bundles and the real symplectic group. In: Herdeiro, C., Picken, P. (eds.) Proceedings of the XIX International Fall Workshop on Geometry and Physics. AIP Conference Proceedings, vol. 1360, pp. 39-50. American Institute of Physics, Melville (2011). https://doi.org/10.1063/1.3599126 · Zbl 1236.81121
[11] Gothen, PB; Oliveira, AG, Rank two quadratic pairs and surface group representations, Geom. Dedicata, 161, 335-375, (2012) · Zbl 1256.14033 · doi:10.1007/s10711-012-9709-1
[12] Hitchin, NJ, The self-duality equations on a Riemann surface, Proc. London Math. Soc., 55, 59-126, (1987) · Zbl 0634.53045 · doi:10.1112/plms/s3-55.1.59
[13] Hitchin, N., Stable bundles and integrable systems, Duke Math. J., 54, 91-114, (1987) · Zbl 0627.14024 · doi:10.1215/S0012-7094-87-05408-1
[14] Hitchin, NJ, Lie groups and Teichmüller space, Topology, 31, 449-473, (1992) · Zbl 0769.32008 · doi:10.1016/0040-9383(92)90044-I
[15] Hitchin, N., Langlands duality and \(G_2\) spectral curves, Q. J. Math., 58, 319-344, (2007) · Zbl 1144.14034 · doi:10.1093/qmath/ham016
[16] Hitchin, N.: Higgs bundles and characteristic classes (2013). arXiv:1308.4603
[17] Kapustin, Anton; Witten, Edward, Electric-magnetic duality and the geometric Langlands program, Communications in Number Theory and Physics, 1, 1-236, (2007) · Zbl 1128.22013 · doi:10.4310/CNTP.2007.v1.n1.a1
[18] Schaposnik, L.P.: Monodromy of the \(\text{SL}_2\) Hitchin fibration. Internat. J. Math. 24(2), # 1350013 (2013) · Zbl 1328.14020
[19] Schaposnik, LP, Spectral data for \(\text{ U }(m, m)\)-Higgs bundles, Int. Math. Res. Not. IMRN, 2015, 3486-3498, (2015) · Zbl 1325.14052
[20] Schaposnik, L.P.: Spectral Data for \(G\)-Higgs Bundles. Ph.D. Thesis, University of Oxford (2013). arXiv:1301.1981
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.