×

At the crossroads of three seemingly divergent approaches to quantum mechanics. (English) Zbl 1404.81012

Khrennikov, Andrei (ed.) et al., Quantum foundations, probability and information. Cham: Springer (ISBN 978-3-319-74970-9/hbk; 978-3-319-74971-6/ebook). STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health, 13-21 (2018).
Conclusions: The comparative analysis of different quantum mechanical interpretations suggests new ways to face the deeply rooted interpretational problem. This kind of analysis might contribute to a possible future consensus in the interpretation of quantum mechanics. The comparison put forth in this article among three different approaches to quantum mechanics has oriented the development of an information-theoretic Darwinian approach from which quantum mechanics could emerge as a realist, quasi-causal, and local theory that would code an optimal strategy for the stability of physical systems. In addition DAQM presents a unifying information-theoretic scheme for physical and biological systems that might contribute to a deeper understanding of nature.
For the entire collection see [Zbl 1404.81011].

MSC:

81P05 General and philosophical questions in quantum theory
Full Text: DOI

References:

[1] Schrödinger, E.: Nature and the Greeks. Cambridge University Press, Cambridge (1954) · Zbl 0057.00102
[2] Mückenheim, W.: A review of extended probabilities. Phys. Rep. 133, 337-401 (1986) · doi:10.1016/0370-1573(86)90110-9
[3] Jaeger, G.: Entanglement, Information, and the Interpretation of Quantum Mechanics. Springer, Berlin (2009) · doi:10.1007/978-3-540-92128-8
[4] Jaeger, G.: Quantum Objects. Springer, Heidelberg (2014) · Zbl 1302.81016 · doi:10.1007/978-3-642-37629-0
[5] Styer, D.F., Balkin, M.S., Becker, K.M., Burns, M.R., Dudley, C.E., Forth, S.T., Gaumer, J.S., Kramer, M.A., Oertel, D.C., Park, L.H., Rinkoski, M.T., Smith, C.T., Wotherspoon, T.D.: Nine formulations of quantum mechanics. Am. J. Phys. 70, 288-297 (2002) · doi:10.1119/1.1445404
[6] Goldstein, S.: Bohmian mechanics. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (Fall 2016 edition). https://plato.stanford.edu/archives/fall2016/entries/qm-bohm/ (2016) · Zbl 1187.81138
[7] Healey, R.: Quantum-Bayesian and pragmatist views of quantum theory. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (Winter 2016 edition). https://plato.stanford.edu/archives/win2017/entries/quantum-bayesian/ (2016)
[8] Aharonov, Y., Popescu, S., Tollaksen, J.: A time-symmetric formulation of quantum mechanics. Phys. Today. 63, 27-32 (2010) · doi:10.1063/1.3518209
[9] t Hooft, G.: The free-will postulate in quantum mechanics (2007). arXiv:quant-ph/0701097
[10] Hossenfelder, S.: Testing superdeterministic conspiracy (2014). arXiv:1401.0286[quant-ph]
[11] Bell, J.: In: Davies, P.C.W., Brown, J.R. (eds.) The Ghost in the Atom, p. 73. Cambridge University Press, Cambridge (1986)
[12] Plotnitsky, A.: Niels Bohr and Complementarity. Springer, New York (2013) · Zbl 1322.81002
[13] O’Connor, T.: Free will. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (Summer 2016 edition). https://plato.stanford.edu/archives/sum2016/entries/freewill/ (2016)
[14] Baladrón, C.: Physical microscopic free-choice model in the framework of a Darwinian approach to quantum mechanics. Fortschr. Phys. 65, 1600052 (2017) · Zbl 1371.81018 · doi:10.1002/prop.201600052
[15] Vaidman, L.: Many-worlds interpretation of quantum mechanics. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (Fall 2016 edition). https://plato.stanford.edu/archives/fall2016/entries/qm-manyworlds/ (2016) · Zbl 1356.81050
[16] Bohm, D., Hiley, B.J.: The Undivided Universe. An Ontological Interpretation of Quantum Theory. Routledge, London (1993)
[17] Goldstein, S.: Bohmian mechanics and quantum information. Found. Phys. 40, 335-355 (2010) · Zbl 1187.81138 · doi:10.1007/s10701-009-9319-4
[18] Baladrón, C.: In search of the adaptive foundations of quantum mechanics. Phys. E. 42, 335-338 (2010) · doi:10.1016/j.physe.2009.06.071
[19] Baladrón, C.: Elements for the development of a Darwinian scheme leading to quantum mechanics. In: Nieuwenhuizen, T., et al. (eds.) Quantum Foundations and Open Quantum Systems, pp. 489-519. World Scientific, Singapore (2014) · doi:10.1142/9789814616737_0013
[20] Baladrón, C., Khrennikov, A.: Quantum formalism as an optimisation procedure of information flows for physical and biological systems. BioSystems. 150, 13-21 (2016) · Zbl 1404.81012 · doi:10.1016/j.biosystems.2016.08.009
[21] Baladrón, C., Khrennikov, A.: Outline of a unified Darwinian evolutionary theory for physical and biological systems. Prog. Biophys. Mol. Biol. 130, 80 (2017). https://doi.org/10.1016/j.pbiomolbio.2017.05.006 · doi:10.1016/j.pbiomolbio.2017.05.006
[22] Barker-Plummer, D.: Turing machines. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (Winter 2016 edition). http://plato.stanford.edu/archives/win2016/entries/turing-machine/ (2016)
[23] Deutsch, D.: Proc. R. Soc. Lond. A. Quantum theory, the Church-Turing principle and the universal quantum computer. 400, 97-117 (1985) · Zbl 0900.81019 · doi:10.1098/rspa.1985.0070
[24] Timpson, C.: Philosophical aspects of quantum information theory. In: Rickles, D. (ed.) The Ashgate Companion to the New Philosophy of Physics, pp. 197-261. Ashgate, Aldershot (2008)
[25] Aldrich, H.E., Hodgson, G.M., Hull, D.L., Knudsen, T., Mokyr, J., Vanberg, V.J.: In defence of generalized Darwinism. J. Evol. Econ. 18, 577-596 (2008) · doi:10.1007/s00191-008-0110-z
[26] Asano, M., Khrennikov, A., Ohya, M., Tanaka, Y., Yamato, I.: Quantum Adaptivity in Biology: From Genetics to Cognition. Springer, Heidelberg (2014) · Zbl 1402.92005
[27] Asano, M., Basieva, I., Khrennikov, A., Ohya, M., Tanaka, Y., Yamato, I.: Quantum information biology: from information interpretation of quantum mechanics to applications in molecular biology and cognitive psychology. Found. Phys. 45, 1362-1378 (2015) · Zbl 1326.81034 · doi:10.1007/s10701-015-9929-y
[28] Perrard, S., Labousse, M., Miskin, M., Fort, E., Couder, Y.: Self-organization into quantized eigenstates of a classical wave-driven particle. Nat. Commun. 5, 3219 (2014) · doi:10.1038/ncomms4219
[29] Perrard, S., Fort, E., Couder, Y.: Wave-based turing machine: time reversal and information erasing. Phys. Rev. Lett. 117, 094502 (2016) · doi:10.1103/PhysRevLett.117.094502
[30] Chatterjee, K., Pavlogiannis A., Adlam, B., Nowak, M.A.: The time scale of evolutionary trajectories (2013). <hal-00907940>
[31] Valentini, A.: Astrophysical and cosmological tests of quantum theory. J. Phys. A Math. Theor. 40, 3285-3303 (2007) · Zbl 1117.81313 · doi:10.1088/1751-8113/40/12/S24
[32] Chomsky, N.: New Horizons in the Study of Language and Mind. Cambridge University Press, Cambridge (2000) · doi:10.1017/CBO9780511811937
[33] Peres, A.: Unperformed experiments have no results. Am. J. Phys. 46, 745-757 (1978) · doi:10.1119/1.11393
[34] Smolin, L.: The status of cosmological natural selection (2006). arXiv:hep-th/0612185
[35] Zurek, W.H.: Quantum Darwinism. Nat. Phys. 5, 181-188 (2009) · doi:10.1038/nphys1202
[36] Smolin, L.: Temporal naturalism (2013). arXiv:1310.8539[physics.hist-ph] · Zbl 1329.83239
[37] Lloyd, S.: The universe as quantum computer (2013) · Zbl 1256.68076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.