×

The Schur decomposition of the velocity gradient tensor for turbulent flows. (English) Zbl 1404.76107

Summary: The velocity gradient tensor for turbulent flow contains crucial information on the topology of turbulence, vortex stretching and the dissipation of energy. A Schur decomposition of the velocity gradient tensor (VGT) is introduced to supplement the standard decomposition into rotation and strain tensors. Thus, the normal parts of the tensor (represented by the eigenvalues) are separated explicitly from non-normality. Using a direct numerical simulation of homogeneous isotropic turbulence, it is shown that the norm of the non-normal part of the tensor is of a similar magnitude to the normal part. It is common to examine the second and third invariants of the characteristic equation of the tensor simultaneously (the \(\mathbf{Q}-\mathbf{R}\) diagram). With the Schur approach, the discriminant function separating real and complex eigenvalues of the VGT has an explicit form in terms of strain and enstrophy: where eigenvalues are all real, enstrophy arises from the non-normal term only. Re-deriving the evolution equations for enstrophy and total strain highlights the production of non-normality and interaction production (normal straining of non-normality). These cancel when considering the evolution of the VGT in terms of its eigenvalues but are important for the full dynamics. Their properties as a function of location in \(\mathbf{Q}-\mathbf{R}\) space are characterized. The Schur framework is then used to explain two properties of the VGT: the preference to form disc-like rather than rod-like flow structures, and the vorticity vector and strain alignments. In both cases, non-normality is critical for explaining behaviour in vortical regions.

MSC:

76F05 Isotropic turbulence; homogeneous turbulence
76F65 Direct numerical and large eddy simulation of turbulence

Software:

Eigtool

References:

[1] Ashurst, W. T.; Kerstein, A. R.; Kerr, R. A.; Gibson, C. H., Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence, Phys. Fluids, 30, 2343-2353, (1987) · doi:10.1063/1.866513
[2] Betchov, R., An inequality concerning the production of vorticity in isotropic turbulence, J. Fluid Mech., 1, 497-504, (1956) · Zbl 0071.40603 · doi:10.1017/S0022112056000317
[3] Biferale, L.; Chevillard, L.; Meneveau, C.; Toschi, F., Multiscale model of gradient evolution in turbulent flows, Phys. Rev. Lett., 98, (2007) · doi:10.1103/PhysRevLett.98.214501
[4] Cantwell, B. J., Exact solution of a restricted Euler equation for the velocity gradient tensor, Phys. Fluids A, 4, 4, 782-793, (1992) · Zbl 0754.76004 · doi:10.1063/1.858295
[5] Cantwell, B. J., On the behavior of velocity gradient tensor invariants in direct numerical simulations of turbulence, Phys. Fluids A, 5, 2008-2013, (1993) · Zbl 0794.76044 · doi:10.1063/1.858828
[6] Chong, M. S.; Perry, A. E.; Cantwell, B. J., A general classification of three-dimensional flow fields, Phys. Fluids A, 2, 765-777, (1990) · doi:10.1063/1.857730
[7] Dubief, Y.; Delcayre, F., On coherent-vortex identification in turbulence, J. Turbul., 1, N11, (2000) · Zbl 1082.76554 · doi:10.1088/1468-5248/1/1/011
[8] Eberlein, P. J., On measures of non-normality for matrices, Am. Math. Mon., 72, 995-996, (1965) · Zbl 0142.00301 · doi:10.2307/2313341
[9] Elsinga, G. E.; Marusic, I., Evolution and lifetimes of flow topology in a turbulent boundary layer, Phys. Fluids, 22, (2010) · Zbl 1183.76191 · doi:10.1063/1.3291070
[10] Girimaji, S. S.; Pope, S. B., A diffusion model for velocity gradients in turbulence, Phys. Fluids, 2, 2, 242-256, (1990) · Zbl 0697.76071 · doi:10.1063/1.857773
[11] Golub, G. H.; Van Loan, C. F., Matrix Computations, (2013), Johns Hopkins University Press · Zbl 1268.65037
[12] Goto, S., A physical mechanism of the energy cascade in homogeneous isotropic turbulence, J. Fluid Mech., 605, 355-366, (2008) · Zbl 1145.76024 · doi:10.1017/S0022112008001511
[13] Henrici, P., Bounds for iterates, inverses, spectral variation and fields of values of non-normal matrices, Numer. Math., 4, 24-40, (1962) · Zbl 0102.01502 · doi:10.1007/BF01386294
[14] Higham, J. E.; Brevis, W.; Keylock, C. J., A rapid non-iterative proper orthogonal decomposition based outlier detection and correction for PIV data, Meas. Sci. Technol., 27, (2016) · doi:10.1088/0957-0233/27/12/125303
[15] Hunt, J. C. R., Wray, A. A. & Moin, P.1988 Eddies, stream, and convergence zones in turbulent flows. Tech. Rep. CTR-S88. Center for Turbulence Research, Stanford University.
[16] Jeong, E.; Girimaji, S. S., Velocity-gradient dynamics in turbulence: effect of viscosity and forcing, Theor. Comput. Fluid Dyn., 16, 421-432, (2003) · Zbl 1068.76522 · doi:10.1007/s00162-002-0084-7
[17] Jimenez, J., Kinematic alignmernt effects in turbulent flows, Phys. Fluids A, 4, 652-654, (1992) · doi:10.1063/1.858282
[18] Johnson, P. L.; Meneveau, C., A closure for Lagrangian velocity gradient evolution in turbulence using recent-deformation mapping of initially Gaussian fields, J. Fluid Mech., 804, 387-419, (2016) · Zbl 1454.76046 · doi:10.1017/jfm.2016.551
[19] Kerr, R. M., Higher-order derivative correlations and the alignment of small-scale structures in isotropic, numerical turbulence, J. Fluid Mech., 153, 31-58, (1985) · Zbl 0587.76080 · doi:10.1017/S0022112085001136
[20] Keylock, C. J., Synthetic velocity gradient tensors and the identification of statistically significant aspects of the structure of turbulence, Phys. Rev. Fluids, 2, (2017) · doi:10.1103/PhysRevFluids.2.084607
[21] Kuo, A. Y.-S.; Corrsin, S., Experiment on the geometry of the fine-structure regions in fully turbulent fluid, J. Fluid Mech., 56, 447-479, (1972) · doi:10.1017/S0022112072002459
[22] Lawson, J. M.; Dawson, J. R., On velocity gradient dynamics and turbulent structure, J. Fluid Mech., 780, 60-98, (2015) · Zbl 1382.76102 · doi:10.1017/jfm.2015.452
[23] Lee, S. L., A practical upper bound for departure from normality, SIAM J. Matrix Anal. Applics., 16, 462-468, (1995) · Zbl 0827.65051 · doi:10.1137/S0895479893255184
[24] Li, Y.; Meneveau, C., Material deformation in a restricted Euler model for turbulent flows: analytic solution and numerical tests, Phys. Fluids, 19, (2007) · Zbl 1146.76465
[25] Li, Y.; Perlman, E.; Wan, M.; Yang, Y.; Burns, R.; Meneveau, C.; Chen, S.; Szalay, A.; Eyink, G., A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence, J. Turbul., 9, N31, (2008) · Zbl 1273.76210 · doi:10.1080/14685240802376389
[26] Lund, T. S.; Rogers, M. M., An improved measure of strain state probability in turbulent flows, Phys. Fluids, 6, 5, 1838-1847, (1994) · Zbl 0825.76359 · doi:10.1063/1.868440
[27] Lundgren, T. S., Strained spiral vortex model for turbulent structures, Phys. Fluids, 25, 2193-2203, (1982) · Zbl 0536.76034 · doi:10.1063/1.863957
[28] Lüthi, B.; Holzner, M.; Tsinober, A., Expanding the [[()[]mml:mi[]()]]𝙌[[()[]/mml:mi[]()]]-[[()[]mml:mi[]()]]𝙍[[()[]/mml:mi[]()]] space to three dimensions, J. Fluid Mech., 641, 497-507, (2009) · Zbl 1183.76787 · doi:10.1017/S0022112009991947
[29] Martin, J.; Dopazo, C.; Valiño, L., Dynamics of velocity gradient invariants in turbulence: restricted Euler and linear diffusion models, Phys. Fluids, 10, 2012-2025, (1998) · Zbl 1185.76768 · doi:10.1063/1.869717
[30] Meneveau, C., Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows, Annu. Rev. Fluid Mech., 43, 219-245, (2011) · Zbl 1299.76088 · doi:10.1146/annurev-fluid-122109-160708
[31] Nomura, K. K.; Post, G. K., The structure and dynamics of vorticity and rate of strain in incompressible homogeneous turbulence, J. Fluid Mech., 377, 65-97, (1998) · Zbl 0933.76035 · doi:10.1017/S0022112098003024
[32] Ohkitani, K.; Kishiba, S., Nonlocal nature of vortex stretching in an inviscid fluid, Phys. Fluids, 7, 2, 411-421, (1995) · Zbl 0839.76011 · doi:10.1063/1.868638
[33] Paul, I.; Papadakis, G.; Vassilicos, J. C., Genesis and evolution of velocity gradients in a spatially developing turbulence, J. Fluid Mech., 815, 295-332, (2017) · Zbl 1383.76290 · doi:10.1017/jfm.2017.54
[34] Perry, A. E.; Chong, M. S., Description of eddying motions and flow patterns using critical-point concepts, Annu. Rev. Fluid Mech., 19, 125-155, (1987) · doi:10.1146/annurev.fl.19.010187.001013
[35] Reddy, S. C.; Schmid, P. J.; Henningson, D. S., Pseudospectra of the Orr-Sommerfeld operator, SIAM J. Appl. Maths, 53, 15-47, (1993) · Zbl 0778.34060 · doi:10.1137/0153002
[36] Schur, I., Über die charakteristischen Wurzeln einer linearen Substitution mit einer Anwendung auf die Theorie der Integralgleichungen, Math. Ann., 66, 488-510, (1909) · JFM 40.0396.03 · doi:10.1007/BF01450045
[37] Taylor, G. I., The spectrum of turbulence, Proc. R. Soc. Lond. A, 164, 476-490, (1938) · JFM 64.1454.02 · doi:10.1098/rspa.1938.0032
[38] Trefethen, L. N.; Embree, M., Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators, (2005), Princeton University Press · Zbl 1085.15009
[39] Trefethen, L. N.; Trefethen, A. E.; Reddy, S. C.; Driscoll, T. A., Hydrodynamic stability without eigenvalues, Science, 261, 578-584, (1993) · Zbl 1226.76013 · doi:10.1126/science.261.5121.578
[40] Tsinober, A.2001Vortex stretching versus production of strain/dissipation. In Turbulence Structure and Vortex Dynamics (ed. Hunt, J. C. R. & Vassilicos, J. C.), pp. 164-191. Cambridge University Press. · Zbl 0994.76046
[41] Tsinober, A.; Shtilman, L.; Vaisburd, H., A study of properties of vortex stretching and enstrophy generation in numerical and laboratory turbulence, Fluid Dyn. Res., 21, 477-494, (1997) · Zbl 1051.76585 · doi:10.1016/S0169-5983(97)00022-1
[42] Vieillefosse, P., Internal motion of a small element of fluid in an inviscid flow, Physica A, 125, 150-162, (1984) · Zbl 0599.76040 · doi:10.1016/0378-4371(84)90008-6
[43] Wan, M., Chen, S., Eyink, G., Meneveau, C., Perlman, E., Burns, R., Li, Y., Szalay, A. & Hamilton, S.2016 Johns Hopkins Turbulence Database (JHTDB). http://turbulence.pha.jhu.edu/datasets.aspx.
[44] Wan, M.; Xiao, Z.; Meneveau, C.; Eyink, G. L.; Chen, S., Dissipation-energy flux correlations as evidence for the Lagrangian energy cascade in turbulence, Phys. Fluids, 22, 6, 1-4, (2010) · Zbl 1190.76128 · doi:10.1063/1.3447887
[45] Wilczek, M.; Meneveau, C., Pressure Hessian and viscous contributions to velocity gradient statistics based on Gaussian random fields, J. Fluid Mech., 756, 191-225, (2014) · Zbl 1327.76078 · doi:10.1017/jfm.2014.367
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.