×

Predicting the damage on a target plate produced by hypervelocity impact using a decoupled finite particle method. (English) Zbl 1404.74208

Summary: Hypervelocity impact (HVI) is associated with large deformations of structures, phase transitions of materials and scattered debris cloud. It is a great challenge to accurately model the HVI process and predict the damage produced by HVI for conventional numerical methods. In this paper, a recently developed corrective smoothed particle hydrodynamics (SPH) method, decoupled finite particle method (DFPM), is extended to model HVI problems. Validation examples show that DFPM is as flexible as SPH while having much better performance in improving accuracy and removing tensile instability. DFPM is also very attractive for modeling problems with extremely disordered particle distribution (e.g., HVI) as no matrix inversion is required. DFPM is then applied to model the penetration of a sphere on a target plate at various impact velocities and impact angles. It is found that as the impact velocity increases, the hole size increases accordingly and maintains basically constant in a steady state after the impact velocity reaches a critical value. Based on extensive DFPM simulation results, novel formulae are given for predicting the hole size produced by normal and oblique HVIs, which can reproduce experimental data and shows better performance than existing empirical formulae in a wider range of impact velocity.

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs
74R15 High-velocity fracture
Full Text: DOI

References:

[1] Whipple, F. L., Meteorites and space travel, Astron J, 52, 5, 131, (1947)
[2] Maiden, C. J.; Mcmillan, A. R., An investigation of the protection afforded a spacecraft by a thin shield, AIAA J, 2, 11, 595-597, (1964)
[3] Sawle, D. R., Hypervelocity impact in thin sheets and semi-infinite targets at 15 km/s, AIAA J, 8, 7, 1240-1244, (2015)
[4] Nysmith CR, Denardo BP. Experimental investigation of the momentum transfer associated with impact into thin aluminum targets. 1969; NASA TN DD-5492.; Nysmith CR, Denardo BP. Experimental investigation of the momentum transfer associated with impact into thin aluminum targets. 1969; NASA TN DD-5492.
[5] Schonberg, W. P., Hypervelocity impact penetration phenomena in aluminum space structures, J Aerosp Eng, 3, 3, 173-185, (1990)
[6] Hill, S. A., Determination of an empirical model for the prediction of penetration hole diameter in thin plates from hypervelocity impact, Int J Impact Eng, 30, 3, 303-321, (2004)
[7] Hosseini, M.; Abbas, H., Growth of hole in thin plates under hypervelocity impact of spherical projectiles, Thin-Walled Struct, 44, 9, 1006-1016, (2006)
[8] Corbett, B. M., Numerical simulations of target hole diameters for hypervelocity impacts into elevated and room temperature bumpers, Int J Impact Eng, 33, 1-12, 431-440, (2006)
[9] Hiermaier, S.; Könke, D.; Stilp, A. J.; Thoma, K., Computational simulation of the hypervelocity impact of al-spheres on thin plates of different materials, Int J Impact Eng, 20, 1-5, 363-374, (1997)
[10] Liu, M. B.; Liu, G. R., Smoothed particle hydrodynamics (SPH): an overview and recent developments, Arch Comput Methods Eng, 17, 1, 25-76, (2010) · Zbl 1348.76117
[11] Liu, W. K.; Chen, Y.; Jun, S.; Chen, J. S.; Belytschko, T.; Pan, C.; Uras, R. A.; Chang, C. T., Overview and applications of the reproducing kernel particle methods, Arch Comput Methods Eng, 3, 1, 3-80, (1996)
[12] Sulskya, D.; Chenb, Z.; Schreyerc, H. L., A particle method for history-dependent materials, Comput Methods Appl Mech Eng, 118, 1-2, 179-196, (1994) · Zbl 0851.73078
[13] Nassiri, A.; Zhang, S. Y.; Lee, T.; Abke, T.; Vivek, A.; Kinsey, B.; Daehn, G., Numerical investigation of CP-Ti & Cu110 impact welding usingsmoothed particle hydrodynamics and arbitrary Lagrangian-Eulerian methods, J Manuf Process, 28, 3, 558-564, (2017)
[14] Gingold, R. A.; Monaghan, J. J., Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon Not R Astron Soc, 181, 3, 375-389, (1977) · Zbl 0421.76032
[15] Lucy, L. B., A numerical approach to the testing of the fission hypothesis, Astron J, 82, 1013-1024, (1977)
[16] Liu, G. R.; Liu, M. B., Smoothed particle hydrodynamics: a meshfree particle method, (2003), World Scientific: World Scientific Singapore · Zbl 1046.76001
[17] Randles, P. W.; Libersky, L. D., Smoothed particle hydrodynamics: some recent improvements and applications, Comput Methods Appl Mech Eng, 139, 1-4, 375-408, (1996) · Zbl 0896.73075
[18] Feng, D. L.; Liu, M. B.; Li, H. Q.; Liu, G. R., Smoothed particle hydrodynamics modeling of linear shaped charge with jet formation and penetration effects, Comput Fluids, 86, 7, 77-85, (2013) · Zbl 1290.76121
[19] Hu, D.; Long, T.; Liu, C.; Yang, G.; Han, X., Swelling movement induced by underground explosion of aluminized explosive in multilayered compact material, Int J Rock Mech Min Sci, 71, 330-339, (2014)
[20] Xiao, Y.; Dong, H.; Zhou, J.; Wang, J., Studying normal perforation of monolithic and layered steel targets by conical projectiles with SPH simulation and analytical method, Eng Anal Bound Elem, 75, 12-20, (2017) · Zbl 1403.74066
[21] Xiao, Y. H.; Hu, D. A.; Han, X.; Yang, G.; Long, S. Y., Simulation of normal perforation of aluminum plates using axisymmetric smoothed particle hydrodynamics with contact algorithm, Int J Comput Methods, 10, 3, (2013), 1350039-1350031 · Zbl 1359.74335
[22] Xu, F.; Zhao, Y.; Yan, R.; Furukawa, T., Multidimensional discontinuous SPH method and its application to metal penetration analysis, Int J Numer Methods Eng, 93, 11, 1125-1146, (2013) · Zbl 1352.74121
[23] Zhang, A. M.; Yang, W. S.; Huang, C.; Ming, F. R., Numerical simulation of column charge underwater explosion based on SPH and BEM combination, Comput Fluids, 71, 3, 169-178, (2013) · Zbl 1365.76245
[24] Zhang, Z. L.; Ma, T.; Liu, M. B.; Feng, D., Numerical study on high velocity impact welding using a modified SPH method, Int J Comput Methods, 15, (2018) · Zbl 1404.76221
[25] Zhang, Z. L.; Feng, D. L.; Liu, M. B., Investigation of explosive welding through whole process modeling using a density adaptive SPH method, J Manuf Process, 35, 169-189, (2018)
[26] Ganzenmüller, G. C., An hourglass control algorithm for Lagrangian smooth particle hydrodynamics, Comput Methods Appl Mech Eng, 286, 87-106, (2015) · Zbl 1423.74948
[27] Liu, M. B.; Liu, G. R., Restoring particle consistency in smoothed particle hydrodynamics, Appl Numer Math, 56, 1, 19-36, (2006) · Zbl 1329.76285
[28] Zhang, Z. L.; Walayat, K.; Chang, J. Z.; Liu, M. B., Meshfree modeling of fluid-particle two-phase flow with an improved SPH method, Int J Numer Methods Eng, 116, 530-569, (2018) · Zbl 07865042
[29] Li, S. F.; Liu, W. K., Meshfree and particle methods and their applications, Appl Mech Rev, 55, 1-34, (2002)
[30] Chen, J. K.; Beraun, J. E., A generalized smoothed particle hydrodynamics method for nonlinear dynamic problems, Comput Methods Appl Mech Eng, 190, 1-2, 225-239, (2000) · Zbl 0967.76077
[31] Zhang, Z. L.; Walayat, K.; Huang, C.; Chang, J. Z.; Liu, M. B., A finite particle method with particle shifting technique for modeling particulate flows with thermal convection, Int J Heat Mass Transf, 128, 1245-1262, (2019)
[32] Zhang, Z. L.; Liu, M. B., Smoothed particle hydrodynamics with kernel gradient correction for modeling high velocity impact, Eng Anal Bound Elem, 83, 141-157, (2017) · Zbl 1403.74333
[33] Shao, J. R.; Li, H. Q.; Liu, G. R.; Liu, M. B., An improved SPH method for modeling liquid sloshing dynamics, Comput Struct, 100-101, 6, 18-26, (2012)
[34] Liu, M. B.; Zhang, Z. L.; Feng, D. L., A density-adaptive SPH method with kernel gradient correction for modeling explosive welding, Comput Mech, 60, 513-529, (2017) · Zbl 1386.74107
[35] Dyka, C. T.; Ingel, R. P., An approach for tension instability in smoothed particle hydrodynamics (SPH), Comput Struct, 57, 4, 573-580, (1995) · Zbl 0900.73945
[36] Swegle, J. W.; Hicks, D. L.; Attaway, S. W., Smoothed particle hydrodynamics stability analysis, J Comput Phys, 166, 1, 123-134, (1995) · Zbl 0818.76071
[37] Dehnen, W.; Aly, H., Improving convergence in smoothed particle hydrodynamics simulations without pairing instability, Mon Not R Astron Soc, 425, 2, 1068-1082, (2012)
[38] Libersky, L. D.; Petschek, A. G.; Carney, T. C.; Hipp, J. R.; Allahdadi, F. A., High strain Lagrangian hydrodynamics, a three-dimensional sph code for dynamic material response, J Comput Phys, 109, 67-75, (1993) · Zbl 0791.76065
[39] Yang, X.; Liu, M.; Peng, S., Smoothed particle hydrodynamics modeling of viscous liquid drop without tensile instability, Comput Fluids, 92, 3, 199-208, (2014) · Zbl 1391.76644
[40] Lee, C. H.; Gil, A. J.; Greto, G.; Kulasegaram, S.; Bonet, J., A new Jameson-Schmidt-Turkel Smooth Particle Hydrodynamics algorithm for large strain explicit fast dynamics, Comput Methods Appl Mech Eng, 311, 71-111, (2016) · Zbl 1439.74494
[41] Zhang, Z. L.; Liu, M. B., A decoupled finite particle method for modeling incompressible flows with free surfaces, Appl Math Model, 60, 606-633, (2018) · Zbl 1480.65308
[42] Monaghan, J. J., On the problem of penetration in particle methods, J Comput Phys, 82, 1, 1-15, (1989) · Zbl 0665.76124
[43] Liu, M. B.; Liu, G. R., Particle methods for multi-scale and multi-physics, (2016), World Scientific: World Scientific Singapore · Zbl 1344.76002
[44] Benz, W., Smooth particle hydrodynamics-a review, (Buchler, JR, Numerical modelling of nonlinear stellar pulsations: problems and prospects, (1990), Kluwer Academic: Kluwer Academic Boston)
[45] Anderson, J. D., Computational fluid dynamics: the basics with applications, (2002), McGraw Hill: McGraw Hill New York
[46] Johnson, G. R.; Cook, W. H., A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, (Proceedings of seventh international symposium on ballistics. Proceedings of seventh international symposium on ballistics, The Hague, Netherlands, (1983))
[47] Zhou, C. E.; Liu, G. R.; Lou, K. Y., Three-dimensional penetration simulation using smoothed particle hydrodynamics, Int J Comput Methods, 4, 4, 671-691, (2007) · Zbl 1257.74117
[48] Katayama, M.; Takeba, A.; Toda, S.; Kibe, S., Analysis of jet formation and penetration by conical shaped charge with the inhibitor, Int J Impact Eng, 23, 1, 443-454, (1999)
[49] Zukas, J. A., High velocity impact dynamics, (1990), John Wiley and Sons: John Wiley and Sons New York
[50] Taylor, G., The use of flat-ended projectiles for determining dynamic yield stress. I. theoretical considerations, Proc R Soc A, 194, 1038, 289-299, (1948)
[51] Monaghan, J. J., Simulating free surface flows with SPH, J Comput Phys, 110, 2, 399-406, (1994) · Zbl 0794.76073
[52] Ma, S.; Zhang, X.; Qiu, X. M., Comparison study of MPM and SPH in modeling hypervelocity impact problems, Int J Impact Eng, 36, 2, 272-282, (2009)
[53] Johnson, G. R.; Holmquist, T. J., Evaluation of cylinder-impact data for constitutive model constants, J Appl Phys, 64, 8, 3901-3910, (1988)
[54] Zhang, C.; Hu, X. Y.; Adams, N. A., A generalized transport-velocity formulation for smoothed particle hydrodynamics, J Comput Phys, 337, 216-232, (2017) · Zbl 1415.76514
[55] Chen, J. K.; Beraun, J. E.; Jih, C. J., An improvement for tensile instability in smoothed particle hydrodynamics, Comput Mech, 23, 4, 279-287, (1999) · Zbl 0949.74078
[56] Plassard, F.; Mespoulet, J.; Hereil, P., Hypervelocity impact of aluminium sphere against aluminium plate: experiment and LS-DYNA correlation, (Proceedings of the 8th European LS-DYNA users conference, (2011))
[57] Schonberg, W. P.; Taylor, R. A., Penetration and ricochet phenomena in oblique hypervelocity impact, AIAA J, 27, 5, 639-646, (1989)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.