×

A Lagrangian scheme for the solution of nonlinear diffusion equations using moving simplex meshes. (English) Zbl 1404.65083

Summary: A Lagrangian numerical scheme for solving nonlinear degenerate Fokker-Planck equations in space dimensions \(d\geq 2\) is presented. It applies to a large class of nonlinear diffusion equations, whose dynamics are driven by internal energies and given external potentials, e.g. the porous medium equation and the fast diffusion equation. The key ingredient in our approach is the gradient flow structure of the dynamics. For discretization of the Lagrangian map, we use a finite subspace of linear maps in space and a variational form of the implicit Euler method in time. Thanks to that time discretisation, the fully discrete solution inherits energy estimates from the original gradient flow, and these lead to weak compactness of the trajectories in the continuous limit. Consistency is analyzed in the planar situation, \(d=2\). A variety of numerical experiments for the porous medium equation indicates that the scheme is well-adapted to track the growth of the solution’s support.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65P10 Numerical methods for Hamiltonian systems including symplectic integrators
35Q84 Fokker-Planck equations
65K10 Numerical optimization and variational techniques
35A15 Variational methods applied to PDEs
76S05 Flows in porous media; filtration; seepage
35Q35 PDEs in connection with fluid mechanics

References:

[1] Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich, 2nd edn. Birkhäuser Verlag, Basel (2008) · Zbl 1145.35001
[2] Ambrosio, L; Lisini, S; Savaré, G, Stability of flows associated to gradient vector fields and convergence of iterated transport maps, Manuscr. Math., 121, 1-50, (2006) · Zbl 1099.49027 · doi:10.1007/s00229-006-0003-0
[3] Benamou, J.-D., Carlier, G., Mérigot, Q., Oudet, E.: Discretization of functionals involving the Monge-Ampère operator. Numer. Math. 134(3), 611-636 (2015) · Zbl 1354.49061
[4] Bessemoulin-Chatard, M; Filbet, F, A finite volume scheme for nonlinear degenerate parabolic equations, SIAM J. Sci. Comput., 34, b559-b583, (2012) · Zbl 1273.65114 · doi:10.1137/110853807
[5] Blanchet, A; Calvez, V; Carrillo, JA, Convergence of the mass-transport steepest descent scheme for the sub-critical patlak-Keller-Segel model, SIAM J. Numer. Anal., 46, 691-721, (2008) · Zbl 1205.65332 · doi:10.1137/070683337
[6] Budd, CJ; Collins, GJ; Huang, WZ; Russell, RD, Self-similar numerical solutions of the porous-medium equation using moving mesh methods, R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci., 357, 1047-1077, (1999) · Zbl 0931.76079 · doi:10.1098/rsta.1999.0364
[7] Calvez, V; Gallouët, TO, Particle approximation of the one dimensional Keller-Segel equation, stability and rigidity of the blow-up, Discrete Contin. Dyn. Syst. Ser. A, 36, 1175-1208, (2015) · Zbl 1337.35154 · doi:10.3934/dcds.2016.36.1175
[8] Cancès, C., Guichard, C.: Numerical analysis of a robust free energy diminishing finite volume scheme for parabolic equations with gradient structure. Found. Comput. Math. (2016). https://doi.org/10.1007/s10208-016-9328-6 · Zbl 1335.90068
[9] Carrillo, J., Craig, K., Patacchini, F.: A blob method for diffusion. arXiv preprint arXiv:1709.09195 (2017) · Zbl 0984.35089
[10] Carrillo, JA; Chertock, A; Huang, Y, A finite-volume method for nonlinear nonlocal equations with a gradient flow structure, Commun. Comput. Phys., 17, 233-258, (2015) · Zbl 1388.65077 · doi:10.4208/cicp.160214.010814a
[11] Carrillo, JA; Huang, Y; Patacchini, FS; Wolansky, G, Numerical study of a particle method for gradient flows, Kinet. Relat. Models, 10, 613-641, (2017) · Zbl 1354.65180 · doi:10.3934/krm.2017025
[12] Carrillo, JA; Lisini, S; Holden, H (ed.); Karlsen, KH (ed.), On the asymptotic behavior of the gradient flow of a polyconvex functional, 37-51, (2010), Providence · Zbl 1223.35059 · doi:10.1090/conm/526/10376
[13] Carrillo, J.A., Moll, J.S.: Numerical simulation of diffusive and aggregation phenomena in nonlinear continuity equations by evolving diffeomorphisms. SIAM J. Sci. Comput., 31(6), 4305-4329 (2009/10) · Zbl 1205.65265
[14] Carrillo, JA; Patacchini, FS; Sternberg, P; Wolansky, G, Convergence of a particle method for diffusive gradient flows in one dimension, SIAM J. Math. Anal., 48, 3708-3741, (2016) · Zbl 1357.65146 · doi:10.1137/16M1077210
[15] Carrillo, JA; Ranetbauer, H; Wolfram, M-T, Numerical simulation of nonlinear continuity equations by evolving diffeomorphisms, J. Comput. Phys., 327, 186-202, (2016) · Zbl 1373.82070 · doi:10.1016/j.jcp.2016.09.040
[16] Cavalli, F; Naldi, G; Puppo, G; Semplice, M, High-order relaxation schemes for nonlinear degenerate diffusion problems, SIAM J. Numer. Anal., 45, 2098-2119, (2007) · Zbl 1171.65065 · doi:10.1137/060664872
[17] Daneri, S; Savaré, G, Eulerian calculus for the displacement convexity in the Wasserstein distance, SIAM J. Math. Anal., 40, 1104-1122, (2008) · Zbl 1166.58011 · doi:10.1137/08071346X
[18] Degond, P; Mustieles, F-J, A deterministic approximation of diffusion equations using particles, SIAM J. Sci. Statist. Comput., 11, 293-310, (1990) · Zbl 0713.65090 · doi:10.1137/0911018
[19] Düring, B; Matthes, D; Milišic, JP, A gradient flow scheme for nonlinear fourth order equations, Discrete Contin. Dyn. Syst. Ser. B, 14, 935-959, (2010) · Zbl 1206.65221 · doi:10.3934/dcdsb.2010.14.935
[20] Evans, L; Savin, O; Gangbo, W, Diffeomorphisms and nonlinear heat flows, SIAM J. Math. Anal., 37, 737-751, (2005) · Zbl 1096.35061 · doi:10.1137/04061386X
[21] Gianazza, U; Savaré, G; Toscani, G, The Wasserstein gradient flow of the Fisher information and the quantum drift-diffusion equation, Arch. Ration. Mech. Anal., 194, 133-220, (2009) · Zbl 1223.35264 · doi:10.1007/s00205-008-0186-5
[22] Gosse, L; Toscani, G, Identification of asymptotic decay to self-similarity for one-dimensional filtration equations, SIAM J. Numer. Anal., 43, 2590-2606, (2006) · Zbl 1145.76048 · doi:10.1137/040608672
[23] Gosse, L; Toscani, G, Lagrangian numerical approximations to one-dimensional convolution-diffusion equations, SIAM J. Sci. Comput., 28, 1203-1227, (2006) · Zbl 1122.76064 · doi:10.1137/050628015
[24] Jordan, R; Kinderlehrer, D; Otto, F, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29, 1-17, (1998) · Zbl 0915.35120 · doi:10.1137/S0036141096303359
[25] Junge, O., Matthes, D., Osberger, H.: A fully discrete variational scheme for solving nonlinear fokker-planck equations in higher space dimensions. arXiv preprint arXiv:1509.07721 (2015) · Zbl 1359.65201
[26] Kurganov, A; Tadmor, E, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations, J. Comput. Phys., 160, 241-282, (2000) · Zbl 0987.65085 · doi:10.1006/jcph.2000.6459
[27] Lions, P-L; Mas-Gallic, S, Une méthode particulaire déterministe pour des équations diffusives non linéaires, C. R. Acad. Sci. Paris Sér. I Math., 332, 369-376, (2001) · Zbl 0973.65003 · doi:10.1016/S0764-4442(00)01795-X
[28] Mas-Gallic, S, The diffusion velocity method: a deterministic way of moving the nodes for solving diffusion equations, Transp. Theory Stat. Phys., 31, 595-605, (2002) · Zbl 1127.76350 · doi:10.1081/TT-120015516
[29] Matthes, D; Osberger, H, Convergence of a variational Lagrangian scheme for a nonlinear drift diffusion equation, ESAIM Math. Model. Numer. Anal., 48, 697-726, (2014) · Zbl 1293.65119 · doi:10.1051/m2an/2013126
[30] McCann, RJ, A convexity principle for interacting gases, Adv. Math., 128, 153-179, (1997) · Zbl 0901.49012 · doi:10.1006/aima.1997.1634
[31] Osberger, H; Matthes, D, Convergence of a variational Lagrangian scheme for a nonlinear drift diffusion equation, ESAIM Math. Model. Numer. Anal., 48, 697-726, (2014) · Zbl 1293.65119 · doi:10.1051/m2an/2013126
[32] Osberger, H., Matthes, D.: Convergence of a fully discrete variational scheme for a thin-film equation. In: Bergounioux, M., et al. (eds.) Topological Optimization and Optimal Transport in the Applied Sciences. Radon Series on Computational and Applied Mathematics 17, pp. 356-399. De Gruyter (2017) · Zbl 1380.49041
[33] Osberger, H; Matthes, D, A convergent Lagrangian discretization for a nonlinear fourth order equation, Found. Comput. Math., 17, 1-54, (2015) · Zbl 1384.65067
[34] Otto, F, Lubrication approximation with prescribed nonzero contact anggle, Commun. Partial Differ. Equ., 23, 2077-2164, (1998) · Zbl 0923.35211 · doi:10.1080/03605309808821411
[35] Otto, F, The geometry of dissipative evolution equations: the porous medium equation, Commun. Partial Differ. Equ., 26, 101-174, (2001) · Zbl 0984.35089 · doi:10.1081/PDE-100002243
[36] Peyré, G, Entropic approximation of Wasserstein gradient flows, SIAM J. Imaging Sci., 8, 2323-2351, (2015) · Zbl 1335.90068 · doi:10.1137/15M1010087
[37] Russo, G, Deterministic diffusion of particles, Commun. Pure Appl. Math., 43, 697-733, (1990) · Zbl 0713.65089 · doi:10.1002/cpa.3160430602
[38] Vázquez, J .L.: The Porous Medium Equation: Mathematical Theory. Oxford University Press, Oxford (2007) · Zbl 1107.35003
[39] Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence (2003) · Zbl 1106.90001
[40] Westdickenberg, M; Wilkening, J, Variational particle schemes for the porous medium equation and for the system of isentropic Euler equations, ESAIM. Math. Model. Numer. Anal., 44, 133-166, (2010) · Zbl 1423.76449 · doi:10.1051/m2an/2009043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.