×

Exact finite difference schemes for three-dimensional linear systems with constant coefficients. (English) Zbl 1404.65071

Summary: In this paper, implicit and explicit exact difference schemes (EDS) for system \(x^\prime = Ax\) of three linear differential equations with constant coefficients are constructed. Numerical simulations for stiff problem and for problems with periodic solutions on very large time interval demonstrate the efficiency and exactness of the EDS compared with high-order numerical methods. This result can be extended for constructing EDS for general systems of \(n\) linear differential equations with constant coefficients and nonstandard finite difference (NSFD) schemes preserving stability properties for quasi-linear system of equations \(x^\prime = Ax + f(x)\).

MSC:

65L12 Finite difference and finite volume methods for ordinary differential equations
65L05 Numerical methods for initial value problems involving ordinary differential equations
65L04 Numerical methods for stiff equations

Software:

RODAS

References:

[1] Anguelov, R; Lubuma, JM-S, Nonstandard finite difference method by nonlocal approximations, Math. Comput. Simul., 61, 465-475, (2003) · Zbl 1015.65034 · doi:10.1016/S0378-4754(02)00106-4
[2] Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM, Philadelphia (1998) · Zbl 0908.65055 · doi:10.1137/1.9781611971392
[3] Dimitrov, DT; Kojouharov, HV, Stability-preserving finite-difference methods for general multi-dimensional autonomous dynamical systems, Int. J. Numer. Anal. Model., 4, 280-290, (2007) · Zbl 1113.37065
[4] Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I, Nonstiff Problems. Springer-Verlag, Berlin Heidelberg (1987) · Zbl 0638.65058 · doi:10.1007/978-3-662-12607-3
[5] Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II, Stiff and Differential - Algebraic Problems. Springer-Verlag, Berlin Heidelberg (1991) · Zbl 0729.65051
[6] Kaye, R., Wilson, R.: Linear Algebra. Oxford Science Publications, Oxford (1998) · Zbl 0903.15001
[7] Lapinska-Chrzczonowicz, M; Matus, P, Exact difference schemes for a two-dimensional convection-diffusion-reaction equation, Comput. Math. Appl., 67, 2205-2217, (2014) · Zbl 1368.65139 · doi:10.1016/j.camwa.2014.01.022
[8] Agarwal, R.P., O’Regan, D.: An Introduction to Ordinary Differential Equations. Springer, New York (2008) · Zbl 1158.34001 · doi:10.1007/978-0-387-71276-5
[9] Agarwal, R.P.: Difference Equations and Inequalities: Theory, Methods, and Applications. Marcel Dekker, Inc., New York (1998)
[10] Mickens, R.E.: Nonstandard Finite Difference Models of Differential Equations. World Scientific, Singapore (1994) · Zbl 0810.65083
[11] Mickens, R. E. (ed.): Applications of Nonstandard Finite Difference Schemes. World Scientific, Singapore (2000) · Zbl 0989.65101
[12] Mickens, RE; Oyedeji, K; Rucker, S, Exact finite difference scheme for second-order linear ODEs having constant coefficients, J. Sound Vib., 287, 1052-1056, (2005) · Zbl 1243.65097 · doi:10.1016/j.jsv.2005.03.012
[13] Mickens, RE, Exact finite difference schemes for two-dimensional advection equations, J. Sound Vib., 207, 426-428, (1997) · Zbl 1235.76094 · doi:10.1006/jsvi.1997.1160
[14] Mickens, RE, Nonstandard finite difference schemes for differential equations, J. Differ. Equ. Appl., 8, 823-847, (2008) · Zbl 1010.65032 · doi:10.1080/1023619021000000807
[15] Roeger, L-IW, Nonstandard finite difference schemes for differential equations with n + 1 distinct fixed-points, J. Differ. Equ. Appl., 15, 133-151, (2009) · Zbl 1202.65098 · doi:10.1080/10236190801987912
[16] Roeger, L-IW, Exact nonstandard finite-difference methods for a linear system - the case of centers, J. Differ. Equ. Appl., 14, 381-389, (2008) · Zbl 1138.65055 · doi:10.1080/10236190701607669
[17] Roeger, L-IW, Exact finite-difference schemes for two-dimensional linear systems with constant coefficients, J. Comput. Appl. Math., 219, 102-109, (2008) · Zbl 1151.65066 · doi:10.1016/j.cam.2007.07.015
[18] Roeger, L. -I. W., Gelca, R.: Dynamically consistent discrete-time Lotka-Volterra competition models. In: Hou, X., et al. (eds.) Discrete and Continuous Dynamical Systems. Proceedings of the 7Th AIMS International Conference (Arlington), pp 650-658. Supplement (2009) · Zbl 1184.92057
[19] Roeger, L-IW, Periodic solutions preserved by nonstandard finite-difference schemes for Lotka-Volterra system: A different approach, J. Differ. Equ. Appl., 14, 481-493, (2008) · Zbl 1148.39012 · doi:10.1080/10236190701640363
[20] Roeger, L-IW, Nonstandard finite-difference schemes for the Lotka-Volterra systems: generalization of mickens’s method, J. Differ. Equ. Appl., 12, 937-948, (2006) · Zbl 1119.65075 · doi:10.1080/10236190600909380
[21] Roeger, L-IW; Mickens, RE, Exact finite-difference schemes for first order differential equations having three distinct fixed-points, J. Differ. Equ. Appl., 13, 1179-1185, (2007) · Zbl 1131.65061 · doi:10.1080/10236190701466439
[22] Roeger, L-IW; Mickens, RE, Exact finite difference and non-standard finite difference schemes for dx/dt = −xα, J. Differ. Equ. Appl., 18, 1511-1517, (2012) · Zbl 1260.65072 · doi:10.1080/10236198.2011.574622
[23] Roeger, L-IW; Mickens, RE, Exact finite difference scheme for linear differential equation with constant coefficients, J. Differ. Equ. Appl., 19, 1663-1670, (2013) · Zbl 1300.65055 · doi:10.1080/10236198.2013.771635
[24] Weintraub, S.H.: Jordan Canonical Form: Application To Differential Equations. Morgan & Claypool Publishers (2008) · Zbl 1211.15016
[25] Zibaei, S; Zeinadini, M; Namjoo, M, Numerical solutions of Burgers-Huxley equation by exact finite difference and NSFD schemes, J. Differ. Equ. Appl., 22, 1098-1113, (2016) · Zbl 1372.37124 · doi:10.1080/10236198.2016.1173687
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.