×

The evolution of states in a spatial population model. (English) Zbl 1404.60124

Authors’ abstract: The evolution of states in a spatial population model is studied. The model describes an infinite system of point entities in \(\mathbb R^d\) which reproduce themselves at distant points (disperse) and die with rate that includes a competition term. The system’s states are probability measures on the space of configurations, and their evolution is obtained from a hierarchical chain of differential equations for the corresponding correlation functions derived from the Fokker-Planck equation for the states. Under natural conditions imposed on the model parameters it is proved that the correlation functions evolve in a scale of Banach spaces in such a way that at each moment of time the correlation function corresponds to a unique sub-Poissonian state. Some further properties of the evolution of states constructed in this way are described.

MSC:

60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
92D25 Population dynamics (general)
82C22 Interacting particle systems in time-dependent statistical mechanics

References:

[1] Albeverio, S., Kondratiev, Y.G., Röckner, M.: Analysis and geometry on configuration spaces. J. Funct. Anal. 154, 444-500 (1998) · Zbl 0914.58028 · doi:10.1006/jfan.1997.3183
[2] Angelescu, N., Nenciu, G., Protopopescu, V.: On stable potentials. Commun. Math. Phys. 22, 162-165 (1971) · Zbl 0215.12001 · doi:10.1007/BF01651335
[3] Banasiak, J., Lachowicz, M., Moszyński, M.: Semigroups for generalized birth-and-death equations in \[\ell^p\] ℓp spaces. Semigroup Forum 73, 175-193 (2006) · Zbl 1178.47027 · doi:10.1007/s00233-006-0621-x
[4] Bellomo, N., Brezzi, F.: Mathematics, complexity and multiscale features of large systems of self-propelled particles. Math. Models Methods Appl. Sci. 26, 207-214 (2016) · Zbl 1398.92024 · doi:10.1142/S0218202516020012
[5] Berns, C.H., Kondratiev, Y., Kozitsky, Y., Kutovyi, O.: Kawasaki dynamics in continuum: micro- and mesoscopic descriptions. J. Dyn. Differ. Equ. 25, 1027-1056 (2013) · Zbl 1291.82075 · doi:10.1007/s10884-013-9328-z
[6] Bolker, B.M., Pacala, S.W.: Using moment equations to understand stochastically driven spatial pattern formation in ecological systems. Theor. Popul. Biol. 52, 179-197 (1997) · Zbl 0890.92020 · doi:10.1006/tpbi.1997.1331
[7] Bolker, B.M., Pacala, S.W., Neuhauser, C.: Spatial dynamics in model plant communities: what do we really know? Am. Nat. 162, 135-148 (2003) · doi:10.1086/376575
[8] Conway, JH; Sloan, NJA; Bannai, E. (ed.); Borcherds, RE (ed.); Leech, J. (ed.); Norton, SP (ed.); Odlyzko, AM (ed.); Parker, RA (ed.); Queen, L. (ed.); Venkov, BB (ed.), Sphere packing, lattices and groups (1999), New York
[9] Feller, W.: An Introduction to Probability Theory and its Applications, 3rd edn. Wiley, New York (1970) · Zbl 0155.23101
[10] Finkelshtein, D.L., Kondratiev, Y.G., Kutovyi, O.: Individual based model with competition in spatial ecology. SIAM J. Math. Anal. 41, 297-317 (2009) · Zbl 1185.60110 · doi:10.1137/080719376
[11] Finkelshtein, D.L., Kondratiev, Y.G., Oliveira, M.J.: Markov evolutions and hierarchical equations in the continuum. I. One-component systems. J. Evol. Equ. 9, 197-233 (2009) · Zbl 1239.60082 · doi:10.1007/s00028-009-0007-9
[12] Finkelshtein, D.L., Kondratiev, Y.G., Kutovyi, O.: Semigroup approach to birth-and-death stochastic dynamics in continuum. J. Funct. Anal. 262, 1274-1308 (2012) · Zbl 1250.47090 · doi:10.1016/j.jfa.2011.11.005
[13] Finkelshtein, D.L., Kondratiev, Y.G., Kozitsky, Y., Kutovyi, O.: The statistical dynamics of a spatial logistic model and the related kinetic equation. Math. Models Methods Appl. Sci. 25, 343-370 (2015) · Zbl 1317.82031 · doi:10.1142/S0218202515500128
[14] Garcia, N.L., Kurtz, T.G.: Spatial birth and death processes as solutions of stochastic equations, ALEA Lat. Am. J. Probab. Math. Stat. 1, 281-303 (2006) · Zbl 1115.60098
[15] Holley, R.A., Stroock, D.W.: Nearest neighbor birth and death processes on the real line. Acta Math. 140, 103-154 (1978) · Zbl 0405.60090 · doi:10.1007/BF02392306
[16] Kijima, M.: Markov Processes for Stochastic Modelling, Stochastic Modeling Series. Chapman & Hall, London (1997) · Zbl 0866.60056 · doi:10.1007/978-1-4899-3132-0
[17] Kondratiev, Y., Kuna, T.: Harmonic analysis on configuration space. I. General theory. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 5, 201-233 (2002) · Zbl 1134.82308 · doi:10.1142/S0219025702000833
[18] Kondratiev, Y.G., Skorokhod, A.V.: On contact models in continuum. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9, 187-198 (2006) · Zbl 1096.60040 · doi:10.1142/S0219025706002305
[19] Kondratiev, Y., Kuna, T., Oliveira, M.J.: Holomorphic Bogoliubov functionals for interacting particle systems in continuum. J. Funct. Anal. 238, 375-404 (2006) · Zbl 1102.60088 · doi:10.1016/j.jfa.2006.06.001
[20] Kondratiev, Y., Kutoviy, O., Minlos, R.: On non-equilibrium stochastic dynamics for interacting particle systems in continuum. J. Funct. Anal. 255, 200-227 (2008) · Zbl 1206.82069 · doi:10.1016/j.jfa.2007.12.006
[21] Kondratiev, Y., Kutovyi, O., Pirogov, S.: Correlation functions and invariant measures in continuous contact model. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 11, 231-258 (2008) · Zbl 1157.60086 · doi:10.1142/S0219025708003038
[22] Kondratiev, Y., Kozitsky, Y., Shoikhet, D.: Dynamical systems on sets of holomorphic functions. Contemp. Math. 553, 139-153 (2011) · Zbl 1243.47068 · doi:10.1090/conm/553/10937
[23] Kozitsky, Y.: Dynamics of spatial logistic model: finite systems. In: Banasiak, J., Bobrowski, A., Lachowicz, M. (eds.), Semigroups of Operators—Theory and Applications: Bȩdlewo, Poland, October 2013. Springer Proceedings in Mathematics & Statistics, vol. 113, pp. 197-211. Springer (2015) · Zbl 1329.82094
[24] Murrell, D.J., Dieckmann, U., Law, R.: On moment closures for population dynamics in contunuous space. J. Theor. Biol. 229, 421-432 (2004) · Zbl 1440.92057 · doi:10.1016/j.jtbi.2004.04.013
[25] Neuhauser, C.: Mathematical challenges in spatial ecology. Not. AMS 48(11), 1304-1314 (2001) · Zbl 1128.92328
[26] Obata, N.: Configuration space and unitary representations of the group of diffeomorphisms. RIMS Kôkyûroku 615, 129-153 (1987)
[27] Ovaskainen, O., Finkelshtein, D., Kutovyi, O., Kornel, S., Bolker, B., Kondratiev, Y.: A general mathematical framwork for the analysis of spatio-temporal point processes. Theor. Ecol. 7, 101-113 (2014) · doi:10.1007/s12080-013-0202-8
[28] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences. Springer, New York (1983) · Zbl 0516.47023 · doi:10.1007/978-1-4612-5561-1
[29] Pechersky, E.A., Zhukov, Y.: Uniqueness of Gibbs state for non- ideal gas in \[{\mathbf{R}}^d\] Rd: the case of pair potentials. J. Stat. Phys. 97, 145-172 (1999) · Zbl 1006.82003 · doi:10.1023/A:1004615001653
[30] Riccardi, LM; Hallamand, TG (ed.); Levin, SA (ed.), Stochastic population theory: birth and death processes, 155-190 (1986), Berlin · doi:10.1007/978-3-642-69888-0_8
[31] Ruelle, D.: Statistical Mechanics: Rigorous Results. W. A. Benjamin Inc., New York (1969) · Zbl 0177.57301
[32] Thieme, HR; Voigt, J.; Weber, MR (ed.); Voigt, J. (ed.), Stochastic semigroups: their construction by perturbation and approximation, 135-146 (2006), Dresden · Zbl 1113.47029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.