×

Energy transfer between modes in a nonlinear beam equation. (English. French summary) Zbl 1404.35277

Summary: We consider the nonlinear nonlocal beam evolution equation introduced by Woinowsky-Krieger [38]. We study the existence and behavior of periodic solutions: these are called nonlinear modes. Some solutions only have two active modes and we investigate whether there is an energy transfer between them. The answer depends on the geometry of the energy function which, in turn, depends on the amount of compression compared to the spatial frequencies of the involved modes. Our results are complemented with numerical experiments; overall, they give a complete picture of the instabilities that may occur in the beam. We expect these results to hold also in more complicated dynamical systems.

MSC:

35L35 Initial-boundary value problems for higher-order hyperbolic equations
34D20 Stability of solutions to ordinary differential equations
35A15 Variational methods applied to PDEs
74B20 Nonlinear elasticity
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
35B10 Periodic solutions to PDEs
35R09 Integro-partial differential equations
35B35 Stability in context of PDEs

References:

[1] Al-Gwaiz, M.; Benci, V.; Gazzola, F., Bending and stretching energies in a rectangular plate modeling suspension bridges, Nonlinear Anal., Theory Methods Appl., 106, 18-34 (2014) · Zbl 1288.35201
[2] Ball, J. M., Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl., 42, 61-90 (1973) · Zbl 0254.73042
[3] Berchio, E.; Ferrero, A.; Gazzola, F., Structural instability of nonlinear plates modelling suspension bridges: mathematical answers to some long-standing questions, Nonlinear Anal., Real World Appl., 28, 91-125 (2016) · Zbl 1329.74166
[4] Berchio, E.; Ferrero, A.; Gazzola, F.; Karageorgis, P., Qualitative behavior of global solutions to some nonlinear fourth order differential equations, J. Differential Equations, 251, 2696-2727 (2011) · Zbl 1236.34042
[5] Berchio, E.; Gazzola, F.; Zanini, C., Which residual mode captures the energy of the dominating mode in second order Hamiltonian systems?, SIAM J. Appl. Dyn. Syst., 15, 338-355 (2016) · Zbl 1359.37055
[6] Borg, G., Über die Stabilität gewisser Klassen von linearen differential Gleichungen, Ark. Mat. Astron. Fys., 31A, 31 pp (1944) · Zbl 0063.00522
[7] Broer, H. W.; Levi, M., Geometrical aspects of stability theory for Hill’s equations, Arch. Ration. Mech. Anal., 131, 225-240 (1995) · Zbl 0840.34047
[8] Broer, H. W.; Simó, C., Resonance tongues in Hill’s equations: a geometric approach, J. Differential Equations, 166, 290-327 (2000) · Zbl 1046.34072
[9] Burgreen, D., Free vibrations of a pin-ended column with constant distance between pin ends, J. Appl. Mech., 18, 135-139 (1951)
[10] Burra, L.; Zanolin, F., Complex dynamics in a planar Hamiltonian system of an equation of the Duffing type, EPAM, 2, 3-24 (2016)
[11] Cazenave, T.; Weissler, F. B., Asymptotically periodic solutions for a class of nonlinear coupled oscillators, Port. Math., 52, 109-123 (1995) · Zbl 0837.34056
[12] Cazenave, T.; Weissler, F. B., Unstable simple modes of the nonlinear string, Q. Appl. Math., 54, 287-305 (1996) · Zbl 0866.34044
[13] Cesari, L., Asymptotic Behavior and Stability Problems in Ordinary Differential Equations (1971), Springer: Springer Berlin · Zbl 0215.13802
[14] Chicone, C., The monotonicity of the period function for planar Hamiltonian vector fields, J. Differential Equations, 69, 310-321 (1987) · Zbl 0622.34033
[15] Chicone, C., Ordinary Differential Equations with Applications, Texts Appl. Math., vol. 34 (2006), Springer: Springer New York · Zbl 1120.34001
[16] Dickey, R. W., Free vibrations and dynamic buckling of the extensible beam, J. Math. Anal. Appl., 29, 443-454 (1970) · Zbl 0187.04803
[17] Ding, T. R.; Zanolin, F., Periodic solutions of Duffing’s equations with superquadratic potential, J. Differential Equations, 97, 328-378 (1992) · Zbl 0763.34030
[18] Duffing, G., Erzwungene Schwingungen bei veränderlicher Eigenfrequenz (1918), F. Vieweg u. Sohn: F. Vieweg u. Sohn Braunschweig · JFM 46.1168.01
[19] Eisley, J. G., Nonlinear vibration of beams and rectangular plates, Z. Angew. Math. Phys., 15, 167-175 (1964) · Zbl 0133.19101
[20] Gazzola, F., Nonlinearity in oscillating bridges, Electron. J. Differential Equations, 211, 1-47 (2013) · Zbl 1302.74022
[21] Gazzola, F., Mathematical Models for Suspension Bridges, MS&A. Model. Simul. Appl., vol. 15 (2015), Springer · Zbl 1325.00032
[22] Gazzola, F.; Karageorgis, P., Refined blow-up results for nonlinear fourth order differential equations, Commun. Pure Appl. Anal., 12, 677-693 (2015) · Zbl 1325.34046
[23] Gazzola, F.; Pavani, R., Blow up oscillating solutions to some nonlinear fourth order differential equations, Nonlinear Anal., Theory Methods Appl., 74, 6696-6711 (2011) · Zbl 1237.34043
[24] Gazzola, F.; Pavani, R., Wide oscillations finite time blow up for solutions to nonlinear fourth order differential equations, Arch. Ration. Mech. Anal., 207, 717-752 (2013) · Zbl 1278.34036
[25] Gazzola, F.; Pavani, R., The impact of nonlinear restoring forces in elastic beams, Bull. Belg. Math. Soc., 22, 559-578 (2015) · Zbl 1333.34075
[26] Ghisi, M.; Gobbino, M., Stability of simple modes of the Kirchhoff equation, Nonlinearity, 14, 1197-1220 (2001) · Zbl 0989.35092
[27] Grotta Ragazzo, C., Chaotic oscillations of a buckled beam, Int. J. Bifurc. Chaos Appl. Sci. Eng., 5, 2, 545-549 (1995) · Zbl 0888.35122
[28] Guckenheimer, J.; Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Appl. Math. Sci., vol. 42 (1990), Springer-Verlag: Springer-Verlag New York, revised and corrected reprint of the 1983 original
[29] Hill, G. W., On the part of the motion of the lunar perigee which is a function of the mean motions of the sun and the moon, Acta Math., 8, 1-36 (1886) · JFM 18.1106.01
[30] Li, W.; Zhang, M., A Lyapunov-type stability criterion using \(L^\alpha\) norms, Proc. Am. Math. Soc., 130, 3325-3333 (2002) · Zbl 1007.34053
[31] Lyapunov, A. M., Problème général de la stabilité du mouvement, Ann. Fac. Sci. Toulouse, 2, 9, 203-474 (1907) · JFM 38.0738.07
[32] Magnus, W.; Winkler, S., Hill’s Equation (1979), Dover: Dover New York · Zbl 0158.09604
[33] Ortega, R., The stability of the equilibrium of a nonlinear Hill’s equation, SIAM J. Math. Anal., 25, 1393-1401 (1994) · Zbl 0807.34065
[34] Reiss, E. L., Column buckling - an elementary example of bifurcation, (Keller, J. B.; Antman, S., Bifurcation Theory and Nonlinear Eigenvalue Problems (1969), Benjamin: Benjamin New York), 1-16 · Zbl 0185.53002
[35] Reiss, E. L.; Matkowsky, B. J., Nonlinear dynamic buckling of a compressed elastic column, Q. Appl. Math., 29, 245-260 (1971) · Zbl 0224.73064
[36] Sanders, J. A.; Verhulst, F.; Murdock, J., Averaging Methods in Nonlinear Dynamical Systems, Appl. Math. Sci., vol. 59 (2007), Springer: Springer New York · Zbl 1128.34001
[37] Stoker, J. J., Nonlinear Vibrations in Mechanical and Electrical Systems (1992), John Wiley & Sons: John Wiley & Sons New York · Zbl 0809.70001
[38] Woinowsky-Krieger, S., The effect of an axial force on the vibration of hinged bars, J. Appl. Mech., 17, 35-36 (1950) · Zbl 0036.13302
[39] Yagasaki, K., Homoclinic and heteroclinic behavior in an infinite-degree-of-freedom Hamiltonian system: chaotic free vibrations of an undamped, buckled beam, Phys. Lett. A, 285, 1-2, 55-62 (2001) · Zbl 0969.70509
[40] Yagasaki, K., Monotonicity of the period function for \(u'' - u + u^p = 0\) with \(p \in R\) and \(p > 1\), J. Differential Equations, 255, 1988-2001 (2013) · Zbl 1292.34039
[41] Yakubovich, V. A.; Starzhinskii, V. M., Linear Differential Equations with Periodic Coefficients (1972), J. Wiley & Sons: J. Wiley & Sons New York: Nauka: J. Wiley & Sons: J. Wiley & Sons New York: Nauka Moscow, Russian original
[42] Zhukovskii, N. E., Finiteness conditions for integrals of the equation \(d^2 y / d x^2 + p y = 0\), Mat. Sb., 16, 582-591 (1892), (in Russian)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.