×

Tensor ideals, Deligne categories and invariant theory. (English) Zbl 1404.18017

Broadly speaking, the (classical) First and Second Fundamental Theorems of invariant theory respectively describe a set of generators and a complete set of relations for the space \(X^U\) of invariants of a group, Lie algebra, associative algebra, or some other algebraic structure \(U\), acting linearly on a space \(X\).
For \(\Bbbk\) an algebraically closed field of characteristic zero and any \(\delta\in\Bbbk\), P. Deligne [Studies in Mathematics. Tata Institute of Fundamental Research 19, 209–273 (2007; Zbl 1165.20300)] has defined universal categories \(\underline{\mathsf{Rep}}_0(\mathsf{GL}_\delta)\) and \(\underline{\mathsf{Rep}}_0(\mathsf{O}_\delta)\) (and their pseudo-abelian envelopes \(\underline{\mathsf{Rep}}(\mathsf{GL}_\delta)\) and \(\underline{\mathsf{Rep}}(\mathsf{O}_\delta)\)) which interpolate the classical representation categories of the general linear and orthogonal group. They are universal in the sense that, for example, for every \(\Bbbk\)-linear monoidal category \(\mathcal{C}\) such that \(\mathsf{End}_{\mathcal{C}}(\mathbf{1})=\Bbbk\) and for every dualizable object \(X\) of \(\mathcal{C}\) of dimension \(\delta\) there exists a unique \(\Bbbk\)-linear monoidal functor \(\underline{\mathsf{Rep}}_0(\mathsf{GL}_\delta) \to \mathcal{C}\) mapping the generator of \(\underline{\mathsf{Rep}}_0(\mathsf{GL}_\delta)\) to \(X\). There are cases in which, by their universal properties, these categories come with full monoidal functors to the representation categories of the general linear supergroup \(\mathsf{GL}(m|n)\) and the orthosymplectic supergroup \(\mathsf{OSp}(m|2n)\) (a modern formulation of the FFT).
In the present paper, the author develop some general tools to study tensor ideals in monoidal categories (we point out Theorem 3.1.1, which is a suitable reformulation of a result by Y. André and B. Kahn, Theorem 4.3.1 and its special cases 4.3.4 and 4.4.4) and use them to classify tensor ideals in Deligne’s universal categories \(\underline{\mathsf{Rep}}(\mathsf{GL}_\delta), \underline{\mathsf{Rep}}(\mathsf{O}_\delta), \underline{\mathsf{Rep}}(P)\) (taking advantage of the previously mentioned FFTs), \(\underline{\mathsf{Rep}}(\mathsf{S}_t)\) and in the categories of tilting modules for \(\mathsf{SL}_2(\Bbbk)\) with \(\mathsf{char}(\Bbbk)>0\) and for \(U_q(\mathfrak{sl}_2)\) with \(q\) a root of unity. Moreover, these results are applied to obtain new insights into the SFT for some algebraic supergroups.

MSC:

18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)
17B45 Lie algebras of linear algebraic groups
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
15A72 Vector and tensor algebra, theory of invariants

Citations:

Zbl 1165.20300

References:

[1] Andersen, HH, Tensor products of quantized tilting modules, Commun. Math. Phys., 149, 149-159, (1992) · Zbl 0760.17004 · doi:10.1007/BF02096627
[2] Andersen, H.H.: Cells in Affine Weyl Groups and Tilting Modules. Representation Theory of Algebraic Groups and Quantum Groups. Advanced Studies in Pure Mathematics, vol. 40, pp. 1-16. Mathematical Society of Japan, Tokyo (2004) · Zbl 1078.20043
[3] André, Y.; Kahn, B., Nilpotence, radicaux et structures monoïdales. With an appendix by Peter O’Sullivan, Rend. Sem. Mat. Univ. Padova, 108, 107-291, (2002) · Zbl 1165.18300
[4] Balmer, P., The spectrum of prime ideals in tensor triangulated categories, J. Reine Angew. Math., 588, 149-168, (2005) · Zbl 1080.18007 · doi:10.1515/crll.2005.2005.588.149
[5] Berele, A.; Regev, A., Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras, Adv. Math., 64, 118-175, (1987) · Zbl 0617.17002 · doi:10.1016/0001-8708(87)90007-7
[6] Benkart, G., Halverson, T.: Partition algebras \(P_k(n)\) with \(2k>n\) and the fundamental theorems of invariant theory for the symmetric group \(S_n\). arXiv:1707.01410
[7] Brundan, J.: Representations of the oriented Skein category. arXiv:1712.08953 · Zbl 1391.17003
[8] Brundan, J.; Stroppel, C., Highest weight categories arising from Khovanov’s diagram algebra IV: the general linear supergroup, J. Eur. Math. Soc. (JEMS), 14, 373-419, (2012) · Zbl 1243.17004 · doi:10.4171/JEMS/306
[9] Comes, J., Ideals in Deligne’s category \( {{\rm Rep}}(GL_\delta )\), Math. Res. Lett., 21, 969-984, (2014) · Zbl 1305.18018 · doi:10.4310/MRL.2014.v21.n5.a4
[10] Comes, J.; Heidersdorf, T., Thick Ideals in Deligne’s category \( {{\rm Rep}}(O_\delta )\), J. Algebra, 480, 237-265, (2017) · Zbl 1423.18021 · doi:10.1016/j.jalgebra.2017.01.050
[11] Comes, J., Kujawa, J.R.: A basis theorem for the degenerate affine oriented Brauer-Clifford supercategory. arXiv:1706.09999
[12] Comes, J.; Ostrik, V., On Deligne’s category \( {{\rm Rep}}^{ab}(S_d)\), Algebra Numb. Theory, 8, 473-496, (2014) · Zbl 1305.18019 · doi:10.2140/ant.2014.8.473
[13] Comes, J.; Wilson, B., Deligne’s category \( {\text{Rep}}{GL}\delta \) and representations of general linear supergroups, Represent. Theory, 16, 568-609, (2012) · Zbl 1302.17010 · doi:10.1090/S1088-4165-2012-00425-3
[14] Coulembier, K., The periplectic Brauer algebra, Proc. Lond. Math. Soc., (2016) · Zbl 1417.17008 · doi:10.1112/plms.12137
[15] Coulembier, K.; Ehrig, M., The periplectic Brauer algebra II: decomposition multiplicities, J. Comb. Algebra, 2, 19-46, (2018) · Zbl 1417.17009 · doi:10.4171/JCA/2-1-2
[16] Coulembier, K., Ehrig, M.: The periplectic Brauer algebra III: the Deligne category. arXiv:1704.07547 · Zbl 1417.17009
[17] Coulembier, K., Zhang, R.B.: Borelic pairs for stratified algebras. arXiv:1607.01867
[18] Cox, A.; Visscher, M., Diagrammatic Kazhdan-Lusztig theory for the (walled) Brauer algebra, J. Algebra, 340, 151-181, (2011) · Zbl 1269.20037 · doi:10.1016/j.jalgebra.2011.05.024
[19] Deligne, P.: La catégorie des représentations du groupe symétrique \(S_t\), lorsque \(t\) n’est pas un entier naturel. Algebraic groups and homogeneous spaces, pp. 209-273. Tata Institute of Fundamental Research Studies in Mathematics, Mumbai (2007) · Zbl 1165.20300
[20] Deligne, P.; Lehrer, GI; Zhang, RB, The first fundamental theorem of invariant theory for the orthosymplectic super group, Adv. Math., 327, 4-24, (2018) · Zbl 1391.14103 · doi:10.1016/j.aim.2017.06.009
[21] Deligne, P., Milne, J.S.: Tannakian categories. In: Hodge Cycles, Motives, and Shimura Varieties, LNM 900, pp. 101-228 (1982) · Zbl 0477.14004
[22] Donkin, S., On tilting modules for algebraic groups, Math. Z., 212, 39-60, (1993) · Zbl 0798.20035 · doi:10.1007/BF02571640
[23] Ehrig, M.; Stroppel, C., Schur-Weyl duality for the Brauer algebra and the ortho-symplectic Lie superalgebra, Math. Z., 284, 595-613, (2016) · Zbl 1393.17017 · doi:10.1007/s00209-016-1669-y
[24] Ehrig, M., Stroppel, C.: On the category of finite-dimensional representations of OSP\((r|n)\): part I. Representation theory—current trends and perspectives. EMS Series of Congress Reports (EMS) (2016)
[25] Entova-Aizenbud, I., Hinich, V., Serganova, V.: Deligne categories and the limit of categories \(Rep(GL(m|n))\). arXiv:1511.07699
[26] Graham, JJ; Lehrer, GI, Cellular algebras, Invent. Math., 123, 1-34, (1996) · Zbl 0853.20029 · doi:10.1007/BF01232365
[27] Graham, JJ; Lehrer, GI, The representation theory of affine Temperley-Lieb algebras, Enseign. Math. (2), 44, 173-218, (1998) · Zbl 0964.20002
[28] Goodman, F.; Wenzl, H., Ideals in the Temperley-Lieb category, appendix to M.H. Freedman, Commun. Math. Phys., 234, 129-183, (2003) · Zbl 1060.81054 · doi:10.1007/s00220-002-0785-1
[29] Heidersdorf, T., Mixed tensors of the general linear supergroup, J. Algebra, 491, 402-446, (2017) · Zbl 1420.17008 · doi:10.1016/j.jalgebra.2017.08.012
[30] Hu, J.; Xiao, Z., On tensor spaces for Birman-Murakami-Wenzl algebras, J. Algebra, 324, 2893-2922, (2010) · Zbl 1272.17019 · doi:10.1016/j.jalgebra.2010.08.017
[31] Jantzen, JC, Darstellungen halbeinfacher Gruppen und ihrer Frobenius-Kerne, J. Reine Angew. Math., 317, 157-199, (1980) · Zbl 0451.20040
[32] Jantzen, J.C.: Representations of algebraic groups. In: Mathematical Surveys and Monographs, 2nd edn, vol. 107. American Mathematical Society, Providence (2003) · Zbl 1034.20041
[33] Jones, V.F.R.: The Potts Model and the Symmetric Group. Subfactors (Kyuzeso, 1993), pp. 259-267. World Science Publication, River Edge (1994) · Zbl 0938.20505
[34] Kac, VG; Kazhdan, DA, Structure of representations with highest weight of infinite-dimensional Lie algebras, Adv. Math., 34, 97-108, (1979) · Zbl 0427.17011 · doi:10.1016/0001-8708(79)90066-5
[35] Kazhdan, D.; Lusztig, G., Tensor structures arising from affine Lie algebras. III, IV, J. Am. Math. Soc., 7, 335-381, (1994) · Zbl 0802.17007 · doi:10.1090/S0894-0347-1994-1239506-X
[36] King, O., On the decomposition matrix of the partition algebra in positive characteristic, J. Algebra, 451, 115-144, (2016) · Zbl 1344.20021 · doi:10.1016/j.jalgebra.2015.11.038
[37] Kujawa, JR; Tharp, BC, The marked Brauer category, J. Lond. Math. Soc. (2), 95, 393-413, (2017) · Zbl 1427.17015 · doi:10.1112/jlms.12015
[38] Lehrer, GI; Zhang, RB, The second fundamental theorem of invariant theory for the orthogonal group, Ann. Math. (2), 176, 2031-2054, (2012) · Zbl 1263.20043 · doi:10.4007/annals.2012.176.3.12
[39] Lehrer, GI; Zhang, RB, The Brauer category and invariant theory, J. Eur. Math. Soc., 17, 2311-2351, (2015) · Zbl 1328.14079 · doi:10.4171/JEMS/558
[40] Lehrer, GI; Zhang, RB, The first fundamental theorem of invariant theory for the orthosymplectic supergroup, Commun. Math. Phys., 349, 661-702, (2017) · Zbl 1360.22027 · doi:10.1007/s00220-016-2731-7
[41] Lehrer, G.I., Zhang, R.B.: The second fundamental theorem of invariant theory for the orthosymplectic supergroup. arXiv:1407.1058 · Zbl 1360.22027
[42] Lusztig, G.; Williamson, G., Billiards and tilting characters for \(SL_3\), SIGMA Symmetry Integr. Geom. Methods Appl., 14, 15-22, (2018) · Zbl 1447.20007
[43] Martin, PP, The decomposition matrices of the Brauer algebra over the complex field, Trans. Am. Math. Soc., 367, 1797-1825, (2015) · Zbl 1362.16020 · doi:10.1090/S0002-9947-2014-06163-1
[44] Moon, D., Tensor product representations of the Lie superalgebra \(\mathfrak{p}(n)\) and their centralizers, Commun. Algebra, 31, 2095-2140, (2003) · Zbl 1022.17005 · doi:10.1081/AGB-120018988
[45] Ostrik, V., Tensor ideals in the category of tilting modules, Transform. Groups, 2, 279-287, (1997) · Zbl 0886.17013 · doi:10.1007/BF01234661
[46] Ostrik, V., Module categories over representations of \(SL_q(2)\) in the non-semisimple case, Geom. Funct. Anal., 17, 2005-2017, (2008) · Zbl 1139.18007 · doi:10.1007/s00039-007-0637-4
[47] Serganova, V.: Finite dimensional representations of algebraic supergroups. Proceedings of the International Congress of Mathematicians, Seoul (2014) · Zbl 1373.17023
[48] Sergeev, AN, Representations of the Lie superalgebras \(gl(n, m)\) and \(Q(n)\) in a space of tensors, Funkt. Anal. i Priloz., 18, 80-81, (1984) · Zbl 0542.17002
[49] Soergel, W., Charakterformeln für Kipp-Moduln über Kac-Moody-Algebren, Represent. Theory, 1, 115-132, (1997) · Zbl 0964.17019 · doi:10.1090/S1088-4165-97-00017-4
[50] Turaev, VG, Operator invariants of tangles, and R-matrices, Math. USSR-Izv., 35, 411-444, (1990) · Zbl 0707.57003 · doi:10.1070/IM1990v035n02ABEH000711
[51] Zhang, Y.: On the second fundamental theorem of invariant theory for the orthosymplectic supergroup. arXiv:1603.08361 · Zbl 1441.20029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.