×

Energy of Pythagorean fuzzy graphs with applications. (English) Zbl 1404.05174

Summary: Pythagorean fuzzy sets (PFSs), an extension of intuitionistic fuzzy sets (IFSs), inherit the duality property of IFSs and have a more powerful ability than IFSs to model the obscurity in practical decision-making problems. In this research study, we compute the energy and Laplacian energy of Pythagorean fuzzy graphs (PFGs) and Pythagorean fuzzy digraphs (PFDGs). Moreover, we derive the lower and upper bounds for the energy and Laplacian energy of PFGs. Finally, we present numerical examples, including the design of a satellite communication system and the evaluation of the schemes of reservoir operation to illustrate the applications of our proposed concepts in decision making.

MSC:

05C72 Fractional graph theory, fuzzy graph theory
05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
90B18 Communication networks in operations research

References:

[1] Yager, R.R.; Pythagorean fuzzy subsets; Proceedings of the Joint IFSA World Congress and NAFIPS Annual Meeting: ; .
[2] Yager, R.R.; Pythagorean membership grades in multi-criteria decision making; IEEE Trans. Fuzzy Syst.: 2014; Volume 22 ,958-965.
[3] Atanassov, K.T.; Intuitionistic fuzzy sets; Fuzzy Sets Syst.: 1986; Volume 20 ,87-96. · Zbl 0631.03040
[4] Zhang, X.; Xu, Z.; Extension of TOPSIS to multiple-criteria decision making with Pythagorean fuzzy sets; Int. J. Intell. Syst.: 2014; Volume 29 ,1061-1078.
[5] Peng, X.; Yuan, H.; Yang, Y.; Pythagorean fuzzy information measures and their applications; Int. J. Intell. Syst.: 2017; Volume 32 ,991-1029.
[6] Peng, X.; Yang, Y.; Some results for Pythagorean fuzzy sets; Int. J. Intell. Syst.: 2015; Volume 30 ,1133-1160.
[7] Ren, P.; Xu, Z.; Gou, X.; Pythagorean fuzzy TODIM approach to multi-criteria decision making; Appl. Soft Comput.: 2016; Volume 42 ,246-259.
[8] Gutman, I.; The energy of a graph; Ber. Math. Statist. Sekt. Forsch-Ungszentram Graz.: 1978; Volume 103 ,1-22. · Zbl 0402.05040
[9] Gutman, I.; The energy of a graph: Old and new results; Algebraic Combinatorics and Applications: Berlin, Germany 2001; ,196-211. · Zbl 0974.05054
[10] Gutman, I.; Zhou, B.; Laplacian energy of a graph, Linear Algebra and its Application; J. Linear Algebra Appl.: 2006; Volume 414 ,29-37. · Zbl 1092.05045
[11] Kaufmann, A.; ; Introduction a la Theorie des Sour-Ensembles Flous: Paris, France 1973; . · Zbl 0302.02023
[12] Zadeh, L.A.; Similarity relations and fuzzy orderings; Inf. Sci.: 1971; Volume 3 ,177-200. · Zbl 0218.02058
[13] Rosenfeld, A.; ; Fuzzy graphs, Fuzzy Sets and their Applications: New York, NY, USA 1975; ,77-95. · Zbl 0315.05131
[14] Anjali, N.; Mathew, S.; Energy of a fuzzy graph; Ann. Fuzzy Math. Inf.: 2013; Volume 6 ,455-465. · Zbl 1302.05152
[15] Sharbaf, S.R.; Fayazi, F.; Laplacian energy of a fuzzy graph; Iran. J. Math. Chem.: 2014; Volume 5 ,1-10. · Zbl 1367.05172
[16] Parvathi, R.; Karunambigai, M.G.; Intuitionistic fuzzy graphs; Computational Intelligence, Theory and Applications: Berlin, Germany 2006; ,139-150.
[17] Akram, M.; Davvaz, B.; Strong intuitionistic fuzzy graphs; Filomat: 2012; Volume 26 ,177-196. · Zbl 1289.05395
[18] Praba Chandrasekaran, B.V.M.; Deepa, G.; Energy of an intutionistic fuzzy graph; Italian J. Pure Appl. Math.: 2014; Volume 32 ,431-444. · Zbl 1329.05249
[19] Basha, S.S.; Kartheek, E.; Laplacian energy of an intuitionistic fuzzy graph; J. Sci. Technol.: 2015; Volume 8 ,1-7.
[20] Akram, M.; Ishfaq, N.; Sayed, S.; Smarandache, F.; Decision-making approach based on neutrosophic rough information; Algorithms: 2018; Volume 11 .
[21] Akram, M.; Zafar, F.; Rough fuzzy digraphs with application; J. Appl. Math. Comput.: 2018; Volume 11 ,1-37. · Zbl 1419.05180
[22] Akram, M.; Luqman, A.; Certain networks models using single-valued neutrosophic directed hypergraphs; J. Intell. Fuzzy Syst.: 2017; Volume 33 ,575-588. · Zbl 1376.05126
[23] Akram, M.; Shahzadi, S.; Smarandache, F.; Multi-attribute decision-making method based on neutrosophic soft rough information; Axioms: 2018; Volume 7 .
[24] Sarwar, M.; Akram, M.; An algorithm for computing certain metrics in intuitionistic fuzzy graphs; J. Intell. Fuzzy Syst.: 2016; Volume 30 ,2405-2416. · Zbl 1362.05124
[25] Shahzadi, S.; Akram, M.; Graphs in an intuitionistic fuzzy soft environment; Axioms: 2018; Volume 7 . · Zbl 1453.05078
[26] Naz, S.; Akram, M.; Smarandache, F.; Certain notions of energy in single-valued neutrosophic graphs; Axioms: 2018; Volume 7 .
[27] Naz, S.; Ashraf, S.; Akram, M.; A novel approach to decision-making with Pythagorean fuzzy information; Mathematics: 2018; Volume 6 . · Zbl 1404.05175
[28] Yager, R.R.; Abbasov, A.M.; Pythagorean membership grades, complex numbers, and decision making; Int. J. Intell. Syst.: 2013; Volume 28 ,436-452.
[29] Xu, Z.; Intuitionistic fuzzy aggregation operators; IEEE Trans. Fuzzy Syst.: 2007; Volume 15 ,1179-1187.
[30] Ashraf, S.; Naz, S.; Rashmanlou, H.; Malik, M.A.; Regularity of graphs in single-valued neutrosophic environment; J. Intell. Fuzzy Syst.: 2017; Volume 33 ,529-542. · Zbl 1376.05131
[31] Naz, S.; Rashmanlou, H.; Malik, M.A.; Operations on single-valued neutrosophic graphs with application; J. Intell. Fuzzy Syst.: 2017; Volume 32 ,2137-2151. · Zbl 1375.05224
[32] Naz, S.; Malik, M.A.; Rashmanlou, H.; Hypergraphs and transversals of hypergraphs in interval-valued intuitionistic fuzzy setting; J. Mult.-Valued Logic Soft Comput.: 2018; Volume 30 ,399-417. · Zbl 1400.05167
[33] Dey, A.; Pal, A.; Vertex coloring of a fuzzy graph using alpa cut; Int. J. Manag. IT Eng.: 2012; Volume 2 ,340-352.
[34] Dey, A.; Pradhan, R.; Pal, A.; Pal, T.; In the fuzzy robust graph coloring problem; Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA), Bhubaneswar, Odisha, India, November 2014: Cham, Switzerland 2014; ,805-813.
[35] Dey, A.; Pal, A.; Pal, T.; Interval type 2 fuzzy set in fuzzy shortest path problem; Mathematics: 2016; Volume 4 . · Zbl 1365.05243
[36] Dey, A.; Broumi, S.; Bakali, A.; Talea, M.; Smarandache, F.; A new algorithm for finding minimum spanning trees with undirected neutrosophic graphs; Granul. Comput.: 2018; Volume 3 ,1-7.
[37] Broumi, S.; Dey, A.; Bakali, A.; Talea, M.; Smarandache, F.; Son, L.H.; Koley, D.; Uniform single valued neutrosophic graphs; Neutrosophic Sets Syst.: 2017; Volume 17 ,42-49.
[38] Estrada, E.; Hameed, E.; Langer, M.; Puchalska, A.; Path Laplacian operators and superdiffusive processes on graphs. II. Two-dimensional lattice; Linear Algebra Its Appl.: 2018; Volume 555 ,373-397. · Zbl 06914735
[39] Mathew, S.; Mordeson, J.N.; Connectivity concepts in fuzzy incidence graphs; Inf. Sci.: 2017; Volume 382 ,326-333. · Zbl 1429.05173
[40] Malik, D.S.; Mathew, S.; Mordeson, J.N.; Fuzzy Incidence Graphs: Applications to Human Trafficking; Inf. Sci.: 2018; Volume 447 ,244-255.
[41] Mathew, S.; Mordeson, J.N.; Fuzzy incidence blocks and their applications in illegal migration problems; New Math. Nat. Comput.: 2017; Volume 13 ,245-260.
[42] Jiang, Y.; Xu, Z.; Shu, Y.; Interval-valued intuitionistic multiplicative aggregation in group decision making; Granul. Comput.: 2017; Volume 2 ,387-407.
[43] Xu, K.; Zhou, J.; Gu, R.; Qin, H.; Approach for aggregating interval-valued intuitionistic fuzzy information and its application to reservoir operation; Expert Syst. Appl.: 2011; Volume 38 ,9032-9035.
[44] Wang, Y.M.; Fan, Z.P.; Fuzzy preference relations: Aggregation and weight determination; Comput. Ind. Eng.: 2007; Volume 53 ,163-172.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.