×

Optimal switching control for drug therapy process in cancer chemotherapy. (English) Zbl 1403.92110

Summary: In this paper, the drug therapy problem in cancer chemotherapy is formulated as an optimal control problem of switched systems. In this problem, the modes switch under state-dependent. This is different from the existing optimal control problem of switched systems, in which the modes switch under time-dependent. Thus, the existing optimal control approaches of switched systems with time-dependent switching can not directly used to solve this Problem, and a new numerical computation method is required to develop for solving such problem. Firstly, based on introducing a binary function, relaxing the binary functions and including a penalty term on the relaxation, we obtain an equivalent optimal control problem of constrained nonlinear system. By using the time-scaling transformation, the smoothing technique, and the idea of \(l_1\) penalty function method, the equivalent optimal control problem is transformed into a nonlinear parameter optimization problem. Then, a gradient-based continuous filled function algorithm is developed for solving the nonlinear parameter optimization problem. Finally, a numerical example is used to illustrate our method is low time-consuming, has faster convergence speed, and yields a better objective function value than the existing algorithms.

MSC:

92C50 Medical applications (general)
93C30 Control/observation systems governed by functional relations other than differential equations (such as hybrid and switching systems)
93C10 Nonlinear systems in control theory
93B17 Transformations
49N90 Applications of optimal control and differential games
90C20 Quadratic programming
93-04 Software, source code, etc. for problems pertaining to systems and control theory
Full Text: DOI

References:

[1] Axelsson, H.; Wardi, Y.; Egerstedt, M.; Verriest, E. I., Gradient descent approach to optimal mode scheduling in hybrid dynamical systems., J. Optim. Theory Appl., 136, 2, 167-186, (2008) · Zbl 1141.49021
[2] Bacciotti, A., Periodic open-loop stabilization of planar switched systems., Eur. J. Control, 26, 22-27, (2015) · Zbl 1360.93271
[3] Bellman, R., Mathematical Methods in Medicine., (1983), World Scientific Singapore · Zbl 0527.92004
[4] Bengea, S. C.; DeCarlo, R. A., Optimal control of switching systems., Automatica, 41, 1, 11-27, (2005) · Zbl 1088.49018
[5] Berglas, A., Cancer: Nature, Cause, and Cure., (1957), Institute Pasteur; Paris
[6] Berkovitz, L. D., Optimal Control Theory., (1974), Springer New York: · Zbl 0295.49001
[7] Borrelli, F.; Baotić, M.; Bemporad, A.; Morari, M., Dynamic programming for constrained optimal control of discrete-time linear hybrid systems., Automatica, 41, 10, 1709-1721, (2005) · Zbl 1125.49310
[8] Brunton, G. F.; Wheldon, T. E., The Gompertz equation and the construction of tumour growth curves., Cell Prolif., 13, 4, 455-460, (1980)
[9] Deaecto, G. S.; Fioravanti, A. R.; Geromel, J. C., Suboptimal switching control consistency analysis for discrete-time switched linear systems., Eur. J. Control, 19, 3, 214-219, (2013) · Zbl 1293.93410
[10] DeVita, V. T.; Chu, E., A history of cancer chemotherapy., Cancer Res., 68, 21, 8643-8653, (2008)
[11] DeVita, V. T.; Hellman, S.; Rosenberg, S. A., Principles of chemotherapy, (DeVita, V. T., Cancer: Principles and Practice of Oncology., (1985), Lippincott Philadelphia)
[12] Ding, X. C.; Wardi, Y.; Egerstedt, M., On-line optimization of switched-mode dynamical systems., IEEE Trans. Autom. Control, 54, 9, 2266-2271, (2009) · Zbl 1367.49024
[13] Egerstedt, M.; Wardi, Y.; Axelsson, H., Transition-time optimization for switched-mode dynamical systems., IEEE Trans. Autom. Control, 51, 1, 110-115, (2006) · Zbl 1366.93345
[14] Ge, X.; Kohn, W.; Nerode, A.; Remmel, J. B., Hybrid systems: chattering approximation to relaxed controls-Hybrid Systems III., 76-100, (1996), Springer Berlin Heidelberg
[15] Goldie, J. H.; Coldman, A. J., A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate., Cancer Treat Rep., 63, 11-12, 1727-1733, (1978)
[16] Gorges, D.; Izák, M.; Liu, S., Optimal control and scheduling of switched systems., IEEE Trans. Autom. Control, 56, 1, 135-140, (2011) · Zbl 1368.93341
[17] Hante, F. M.; Sager, S., Relaxation methods for mixed-integer optimal control of partial differential equations., Comput. Optim. Appl., 55, 1, 197-225, (2013) · Zbl 1272.49026
[18] Heydari, A., Optimal switching with minimum Dwell time constraint., J. Frankl. Inst., (2017) · Zbl 1380.93074
[19] Heydari, A.; Balakrishnan, S. N., Optimal switching and control of nonlinear switching systems using approximate dynamic programming., IEEE Trans. Neur. Net Learn. Syst., 25, 6, 1106-1117, (2014)
[20] Ku-Carrillo, R. A.; Delgadillo-Aleman, S. E.; Chen-Charpentier, B. M., Effects of the obesity on optimal control schedules of chemotherapy on a cancerous tumor., J. Comput. Appl. Math., 309, 603-610, (2017) · Zbl 1348.92083
[21] Kundu, A.; Chatterjee, D., A graph theoretic approach to input-to-state stability of switched systems., Eur. J. Control, 29, 44-50, (2016) · Zbl 1347.93227
[22] Lampariello, F.; Liuzzi, G., A filling function method for unconstrained global optimization., Comput. Optim. Appl., 61, 3, 713-729, (2015) · Zbl 1326.90064
[23] Lampariello, F.; Liuzzi, G., Global optimization of protein-peptide docking by a filling function method., J. Optim. Theory Appl., 164, 3, 1090-1108, (2015) · Zbl 1321.90108
[24] Liu, J.; Zhang, K.; Sun, C.; Wei, H., Robust optimal control of switched autonomous systems., IMA J. Math. Control Inform., 33, 2, 173-189, (2016) · Zbl 1397.93058
[25] Liu, X.; Li, S.; Zhang, K., Optimal control of switching time in switched stochastic systems with multi-switching times and different costs., Int. J. Control, (2016)
[26] Lu, W.; Zhu, P.; Ferrari, S., A hybrid-adaptive dynamic programming approach for the model-free control of nonlinear switched systems., IEEE Trans. Autom. Control, 61, 10, 3203-3208, (2016) · Zbl 1359.90146
[27] Malisani, P.; Chaplais, F.; Petit, N., An interior penalty method for optimal control problems with state and input constraints of nonlinear systems., Optim. Control Appl. Meth., 37, 1, 3-33, (2016) · Zbl 1336.49038
[28] Mayneord, W. V., On a law of growth of jensen’s rat sarcoma., Am. J. Cancer, 16, 4, 841-846, (1932)
[29] Monovich, T.; Margaliot, M., A second-order maximum principle for discrete-time bilinear control systems with applications to discrete-time linear switched systems., Automatica, 47, 7, 1489-1495, (2011) · Zbl 1220.49013
[30] Nocedal, J.; Wright, S. J., Numerical Optimization., (2006), Springer New York: · Zbl 1104.65059
[31] Pakniyat, A.; Caines, P. E., Hybrid optimal control of an electric vehicle with a dual-planetary transmission., Nonlinear Anal-Hybrid Syst., (2016)
[32] Pakniyat, A.; Caines, P. E., On the relation between the minimum principle and dynamic programming for classical and hybrid control systems., IEEE Trans. Autom. Control, (2017) · Zbl 1390.49024
[33] Panetta, J. C.; Fister, K. R., Optimal control applied to cell-cycle-specific cancer chemotherapy., SIAM J. Appl. Math., 60, 3, 1059-1072, (2000) · Zbl 0991.92014
[34] Rashevsky, N., Mathematical Biophysics, (1948), University of Chicago Press; Chicago · JFM 64.1148.01
[35] Shackney, S. E.; McCormack, G. W.; Cuchural, G. J., Growth rate patterns of solid tumors and their relation to responsiveness to therapy: an analytical review., Ann. Intern. Med., 89, 1, 107-121, (1978)
[36] Shi, J.; Alagoz, O.; Erenay, F. S.; Su, Q., A survey of optimization models on cancer chemotherapy treatment planning., Ann. Oper. Res., 221, 1, 331-356, (2014) · Zbl 1304.49002
[37] Stellato, B.; Ober-Blobaum, S.; Goulart, P. J., Second-order switching time optimization for switched dynamical systems., IEEE Trans. Autom. Control, (2017) · Zbl 1390.93418
[38] Swan, G. W., Some Current Mathematical Topics in Cancer Research, (1977), Society for Mathematical Biology Ann Arbor
[39] Swan, G. W.; Vincent, T. L., Optimal control analysis in the chemotherapy of IGG multiple myeloma., Bull. Math. Biol., 39, 3, 317-337, (1977) · Zbl 0354.92041
[40] Vasudevan, R.; Gonzalez, H.; Bajcsy, R.; Sastry, S., Consistent approximations for the optimal control of constrained switched systems-part 1: a conceptual algorithm., SIAM J. Control Optim., 51, 6, 4463-4483, (2013) · Zbl 1288.49003
[41] Vasudevan, R.; Gonzalez, H.; Bajcsy, R.; Sastry, S., Consistent approximations for the optimal control of constrained switched systems-part 2: an implementable algorithm., SIAM J. Control Optim., 51, 6, 4484-4503, (2013) · Zbl 1290.49059
[42] Wang, W. X.; Shang, Y. L.; Zhang, L. S.; Zhang, Y., Global minimization of non-smooth unconstrained problems with filled function., Optim. Lett., 7, 3, 435-446, (2013) · Zbl 1268.90056
[43] Warga, J., Optimal Control of Differential and Functional Equations., (2014), Academic Press New York · Zbl 0253.49001
[44] Wu, X.; Zhang, K.; Cheng, M., Computational method for optimal control of switched systems with input and state constraints., Nonlinear Anal-Hybrid Syst., 26, 1-18, (2017) · Zbl 1378.49033
[45] Wu, X.; Zhang, K.; Sun, C., Constrained optimal control of switched systems based on modified BFGS algorithm and filled function method., Int. J. Comput. Math., 91, 8, 1713-1729, (2014) · Zbl 1304.49060
[46] Wu, X.; Zhang, K.; Sun, C., Numerical algorithm for a class of constrained optimal control problems of switched systems., Numer. Algorithms,, 67, 4, 771-792, (2014) · Zbl 1306.65222
[47] Xu, X.; Antsaklis, P. J., Optimal control of switched systems via non-linear optimization based on direct differentiations of value functions., Int. J. Control, 75, 16-17, 1406-1426, (2002) · Zbl 1039.93005
[48] Xu, X.; Antsaklis, P. J., Results and perspectives on computational methods for optimal control of switched systems., Proceedings of International Workshop on Hybrid Systems: Computation and Control, 540-555, (2003), Springer Berlin Heidelberg · Zbl 1038.49034
[49] Yuan, L.; Wan, Z.; Tang, Q., A criterion for an approximation global optimal solution based on the filled functions., J. Ind. Manag. Optim., 12, 1, 375-387, (2016) · Zbl 1317.90287
[50] Yuan, L.; Wan, Z.; Tang, Q.; Zheng, Y., A class of parameter-free filled functions for box-constrained system of nonlinear equations., Acta Math. Appl. Sin-E, 32, 2, 355-364, (2016) · Zbl 1338.65166
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.