×

Spike latency and jitter of neuronal membrane patches with stochastic Hodgkin-Huxley channels. (English) Zbl 1403.92044

Summary: Ion channel stochasticity can influence the voltage dynamics of neuronal membrane, with stronger effects for smaller patches of membrane because of the correspondingly smaller number of channels. We examine this question with respect to first spike statistics in response to a periodic input of membrane patches including stochastic Hodgkin-Huxley channels, comparing these responses to spontaneous firing. Without noise, firing threshold of the model depends on frequency – a sinusoidal stimulus is subthreshold for low and high frequencies and suprathreshold for intermediate frequencies. When channel noise is added, a stimulus in the lower range of subthreshold frequencies can influence spike output, while high subthreshold frequencies remain subthreshold. Both input frequency and channel noise strength influence spike timing. Specifically, spike latency and jitter have distinct minima as a function of input frequency, showing a resonance like behavior. With either no input, or low frequency subthreshold input, or input in the low or high suprathreshold frequency range, channel noise reduces latency and jitter, with the strongest impact for the lowest input frequencies. In contrast, for an intermediate range of suprathreshold frequencies, where an optimal input gives a minimum latency, the noise effect reverses, and spike latency and jitter increase with channel noise. Thus, a resonant minimum of the spike response as a function of frequency becomes more pronounced with less noise. Spike latency and jitter also depend on the initial phase of the input, resulting in minimal latencies at an optimal phase, and depend on the membrane time constant, with a longer time constant broadening frequency tuning for minimal latency and jitter. Taken together, these results suggest how stochasticity of ion channels may influence spike timing and thus coding for neurons with functionally localized concentrations of channels, such as in “hot spots” of dendrites, spines or axons.

MSC:

92C20 Neural biology
92C37 Cell biology
62P10 Applications of statistics to biology and medical sciences; meta analysis
Full Text: DOI

References:

[1] Bezrukov, S.M.; Vodyanov, I., Noise-induced enhancement of single transduction across voltage-dependent ion channels, Nature, 378, 362-364, (1995)
[2] Brumberg, J.C.; Gutkin, B.S., Cortical pyramidal cells as non-linear oscillators: experiment and spike-generation theory, Brain res., 1171, 122-137, (2007)
[3] Butts, D.A.; Weng, C.; Jin, J.; Yeh, C.I.; Lesica, N.A.; Alonso, J.M.; Stanley, G.B., Temporal precision in the neural code and the time scales of natural vision, Nature, 449, 92-95, (2007)
[4] Chen, W.; Zhang, J.J.; Hu, G.Y.; Wu, C.P., Electrophysiological and morphological properties of pyramidal and nonpyramidal neurons in the cat motor cortex in vitro, Neuroscience, 73, 39-55, (1996)
[5] Chow, C.C.; White, J.A., Spontaneous action potentials due to channel fluctuations, J. biophys., 71, 3013-3021, (1996)
[6] de Ruyter van Steveninck, R.; Bialek, W., Real-time performance of a movement sensitive neuron in the blowfly visual system: coding and information transfer in short spike sequences, Proc. R. soc. London ser. B, 234, 379-414, (1988)
[7] Faisal, A.A.; Laughlin, S.B., Stochastic simulations on the reliability of action potential propagation in thin axons, Plos comput. biol., 3, e79, (2007)
[8] Fellous, J.M.; Houweling, A.R.; Modi, R.H.; Rao, R.P.N.; Tiesinga, P.H.E.; Sejnowski, T.J., Frequency dependence of spike timing reliability in cortical pyramidal cells and interneurons, J. neurophysiol., 85, 1782-1787, (2001)
[9] Fox, R.F., Stochastic versions of the hodgkin – huxley equations, J. biophys., 72, 2068-2074, (1997)
[10] Geritner, W.; Kistler, W.M., Spiking neuron models: single neurons populations plasticity, (2002), Cambridge University Press Cambridge · Zbl 1100.92501
[11] Gutkin, B.; Ermentrout, G.B.; Rudolph, M., Spike generating dynamics and the conditions for spike-time precision in cortical neurons, J. comput. neurosci., 15, 91-103, (2003)
[12] Gutkin, B.S.; Ermentrout, G.B.; Reyes, A.D., Phase-response curves give the responses of neurons to transient inputs, J. neurophysiol., 94, 1623-1635, (2005)
[13] Heil, P., First-spike latency of auditory neurons revisited, Curr. opin. neurobiol., 14, 461-467, (2004)
[14] Hodgkin, A.L.; Huxley, A.F., A quantitative description of membrane current and its application to conduction and excitation in nerve, J. physiol. (London), 117, 500-544, (1952)
[15] Hooper, S.L., Transduction of temporal patterns by single neurons, Nat. neurosci., 1, 720-726, (1998)
[16] Hunter, J.D.; Milton, J.G.; Thomas, P.J.; Cowan, J.D., Resonance effect for neuronal spike time reliability, J. neurophysiol., 80, 1427-1438, (1998)
[17] Jung, P.; Shuai, J.W., Optimal size of ion channel clusters, Europhys. lett., 56, 29-35, (2001)
[18] Kaplan, D.T.; Clay, J.R.; Manning, T.; Glass, L.; Guevara, M.R.; Shrier, A., Subthreshold dynamics in periodically stimulated squid axons, Phys. rev. lett., 76, 4074-4077, (1996)
[19] Kosaka, T.; Komada, M.; Kosaka, K., Sodium channel cluster, [beta] IV-spectrin and ankyring positive ‘hot spots’ on dendritic segments of parvalbumin-containing neurons and some other neurons in the mouse and rat main olfactory bulbs, Neurosci. res., 62, 176-186, (2008)
[20] Kruger, J.; Becker, J.D., Recognizing the visual stimulus from neuronal discharges, Trends neurosci., 14, 282-285, (1991)
[21] Lecar, H.; Nossal, R., Theory of threshold fluctuations in nerves. I: relationships between electrical noise and fluctuations in axon firing, J. biophys., 11, 1048-1067, (1971)
[22] Levin, J.E.; Miller, J.P., Broadband neural encoding in the cricket cercal sensory system enhanced by stochastic resonance, Nature, 380, 165-168, (1996)
[23] Meunier, C.; Segev, I., Neurones as physical objects: structure, dynamics and function, (), 353-466
[24] Middlebrooks, J.C.; Clock, A.E.; Xu, L.; Green, D.M., A panoramic code for sound location by cortical neurons, Science, 264, 842-844, (1994)
[25] Mino, H.; Rubinstein, J.T.; White, J.A., Comparison of algorithms for the simulation of action potentials with stochastic sodium channels, Ann. biomed. eng., 30, 578-587, (2002)
[26] Ozer, M.; Ekmekci, N.H., Effect of channel noise on the time-course of recovery from inactivation of sodium channels, Phys. lett. A, 338, 150-154, (2005) · Zbl 1136.92304
[27] Ozer, M., Frequency-dependent information coding in neurons with stochastic ion channels for subthreshold periodic forcing, Phys. lett. A, 354, 258-263, (2006)
[28] Ozer, M.; Uzuntarla, M.; Agaoglu, S.N., Effect of the subthreshold periodic current forcing on the regularity and the synchronization of neuronal spiking activity, Phys. lett. A, 360, 135-140, (2006)
[29] Ozer, M.; Graham, L.J., Impact of network activity on noise delayed spiking for a hodgkin – huxley model, Eur. phys. J. B, 61, 499-503, (2008) · Zbl 1189.82145
[30] Ozer, M.; Uzuntarla, M.; Kayikcioglu, T.; Graham, L.J., Collective temporal coherence for subthreshold signal encoding on a stochastic small-world hodgkin – huxley neuronal network, Phys. lett. A, 372, 6498-6503, (2008) · Zbl 1225.92009
[31] Ozer, M.; Perc, M.; Uzuntarla, M., Stochastic resonance on newman – watts networks of hodgkin – huxley neurons with local periodic driving, Phys. lett. A, 373, 964-968, (2009) · Zbl 1228.92013
[32] Pankratova, E.V.; Polovinkin, A.V.; Spagnolo, B., Suppression of noise in fitzhugh – nagumo model driven by a strong periodic signal, Phys. lett. A, 344, 43-50, (2005) · Zbl 1194.37180
[33] Pankratova, E.V.; Polovinkin, A.V.; Mosekilde, E., Resonant activation in a stochastic hodgkin – huxley model: interplay between noise and suprathreshold driving effects, Eur. phys. J. B, 45, 391-397, (2005)
[34] Panzeri, S.; Petersen, R.S.; Schultz, S.R.; Lebedev, M.; Diamond, M.E., The role spike timing in the coding of stimulus location in rat somatosensory cortex, Neuron, 29, 769-777, (2001)
[35] Philips, D.P., Factors shaping the response latencies of neurons in the Cat’s auditory cortex, Behav. brain res., 93, 33-41, (1998)
[36] Rowat, P.F.; Elson, R.C., State-dependent effects of na channel noise on neuronal burst generation, J. comput. neurosci., 16, 87-112, (2004)
[37] Rubinstein, J.T., Threshold fluctuations in an N sodium channel model of the node of ranvier, J. biophys., 68, 779-785, (1995)
[38] Rudolph, M.; Destexhe, A., Event-based simulation strategy for conductance-based synaptic interactions and plasticity, Neurocomputing, 69, 1130-1133, (2006)
[39] Schmid, G.; Goychuk, I.; Hanggi, P., Stochastic resonance as a collective property of ion channel assemblies, Europhys. lett., 56, 22-28, (2001)
[40] Schmid, G., Goychuk, I., Hanggi, P., 2003. Membrane clusters of ion channels: size effects for stochastic resonance. In: Pastor-Satorras, R., Rubi, M., Diaz-Guilera, A. (Eds.), LNP, vol. 625, pp. 195-206.; Schmid, G., Goychuk, I., Hanggi, P., 2003. Membrane clusters of ion channels: size effects for stochastic resonance. In: Pastor-Satorras, R., Rubi, M., Diaz-Guilera, A. (Eds.), LNP, vol. 625, pp. 195-206. · Zbl 1098.82026
[41] Schmid, G.; Goychuk, I.; Hanggi, P.; Zeng, S.; Jung, P., Stochastic resonance and optimal clustering for assemblies of ion channels, Fluct. noise. lett., 4, 33-42, (2004)
[42] Schmid, G.; Hanggi, P., Intrinsic coherence resonance in excitable membrane patches, Math. biosci., 207, 235-245, (2007) · Zbl 1117.92012
[43] Schneidman, E.; Freedman, B.; Segev, I., Ion channel stochasticity may be critical in determining the reliability and precision of spike timing, Neural comput., 10, 1679-1703, (1998)
[44] Schneidman, E., Segev, I., Tishby, N., 2000. Information capacity and robustness of stochastic neuron models. In: Sollo, S.A., et al. (Eds.), Advances in Neural Information Processing Systems, pp. 178-184.; Schneidman, E., Segev, I., Tishby, N., 2000. Information capacity and robustness of stochastic neuron models. In: Sollo, S.A., et al. (Eds.), Advances in Neural Information Processing Systems, pp. 178-184.
[45] Segev, I.; Rall, W., Excitable dendrites and spines: earlier theoretical insights elucidate recent direct observations, Trends neurosci., 21, 453-460, (1998)
[46] Segundo, J.P.; Sugihara, G.; Dixon, P.; Stiber, M.; Bersier, L.F., The spike trains of inhibited pacemaker neurons seen through the magnifying Glass of nonlinear analyses, Neuroscience, 87, 741-766, (1998)
[47] Sigworth, F.J., The variance of sodium current fluctuations at the node of ranvier, J. physiol. (London), 307, 97-129, (1980)
[48] Skaugen, E.; Walloe, L., Firing behaviour in a stochastic nerve membrane model based upon the hodgkin – huxley equations, Acta physiol. scand., 107, 343-363, (1979)
[49] Steinmetz, P.N.; Manwani, A.; Koch, C., Variability and coding efficiency of noisy neural spike encoders, Biosystems, 62, 87-97, (2001)
[50] Strassberg, A.F.; DeFelice, L.J., Limitations of the hodgkin – huxley formalism: effects of single channel kinetics on trans-membrane voltage dynamics, Neural comput., 5, 843-855, (1993)
[51] Szücs, A.; Elson, R.C.; Rabinovich, M.I.; Abarbanel, H.D.I.; Selverston, A.I., Nonlinear behavior of sinusoidally forced pyloric pacemaker neurons, J. neurophysiol., 85, 1623-1638, (2001)
[52] Tovée, M.J.; Rolls, E.T.; Treves, A.; Bellis, R.P., Information encoding and the response of single neurons in the primate temporal visual cortex, J. neurophysiol., 70, 640-654, (1993)
[53] Tsubo, Y.; Takada, M.; Reyes, A.D.; Fukai, T., Layer and frequency dependencies of phase response properties of pyramidal neurons in rat motor cortex, Eur. J. neurosci., 25, 3429-3441, (2007)
[54] Tuckwell, H.C., Spike trains in a stochastic hodgkin – huxley system, Biosytems, 80, 25-36, (2005)
[55] Tuckwell, H.C.; Wan, F.Y.M., Time to first spike in stochastic hodgkin – huxley systems, Physica A, 351, 427-438, (2005)
[56] Vanrullen, R.; Guyonneau, R.; Thorpe, S.J., Spike times make sense, Trends neurosci., 28, 1-4, (2005)
[57] White, J.A.; Rubinstein, J.T.; Kay, A.R., Channel noise in neurons, Trends neurosci., 23, 131-137, (2000)
[58] Yang, L.; Jia, Y., Effects of patch temperature on spontaneous action potential train due to channel fluctuations: coherence resonance, Biosystems, 81, 267-280, (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.