×

Numerical solution of EFIE using MLPG methods. (English) Zbl 1403.78033

Summary: Meshless local Petrov-Galerkin (MLPG) methods are applied to the electric-field integral equation (EFIE), including seven previously reported schemes and two new suggested. The required dyadic weightings are provided. Especially, the dyadic Green’s function for the differential part of the equation is derived for the first time. Guidelines are suggested for both meshless discretization and efficient implementation. It is shown that by proper selection of the MLPG scheme and its parameters, the stiffness matrix corresponding to the problem can be computed using closed-form expressions, without the need to perform numerical integration. It is shown that using weightings other than the Dirac delta can significantly improve the convergence trend of the meshless solution and increase the accuracy up to two orders of magnitude. It is, also, demonstrated that a meshfree IE solver can more accurately track singularities of the surface current density at conductive edges compared to the method of moments (MoM). In addition, it is shown that such solvers can potentially supersede high-order (HO) MoM as their mesh-based counterpart.

MSC:

78M25 Numerical methods in optics (MSC2010)
65R20 Numerical methods for integral equations
Full Text: DOI

References:

[1] Taflove, A.; Hagness, S. C., Computational electrodynamics: the finite-difference time-domain method, (2005), Artech House Norwood
[2] Jin, J., The finite element method in electromagnetics, (2002), John Wiley & Sons New York · Zbl 1001.78001
[3] Harrington, R. F., Field computation by moment methods, (1968), Macmillan New York
[4] Harrington, R. F., Time-harmonic electromagnetic fields, (2001), IEEE-Press
[5] Guimarães, F. G.; Saldanha, R. R.; Mesquita, R. C.; Lowther, D. A.; Ramírez, J. A., A meshless method for electromagnetic field computation based on the multiquadric technique, IEEE Trans Magn, 43, 4, 1281-1284, (2007)
[6] Zhang, Y.; Shao, K. R.; Guo, Y.; Xie, D. X.; Lavers, J. D., An improved multiquadric collocation method for 3-dimensional electromagnetic problems, IEEE Trans Magn, 43, 4, 1509-1521, (2007)
[7] Lai, S. J.; Wang, B. Z.; Duan, Y., Meshless radial basis function method for transient electromagnetic computations, IEEE Trans Magn, 44, 10, 2288-2295, (2008)
[8] Francomano, E.; Tortorici, A.; Toscano, E.; Ala, G.; Viola, F., On the use of a meshless solver for PDEs governing electromagnetic transients, Appl Math Comput, 209, 42-51, (2009) · Zbl 1160.78317
[9] Kaufmann, T.; Engström, C.; Fumeaux, C.; Vahldieck, R., Eigenvalue analysis and longtime stability of resonant structures for the meshless radial point interpolation method in time domain, IEEE Trans Microw Theory Tech, 58, 12, 3399-3408, (2010)
[10] Yu, Y.; Chen, Z., Towards the development of an unconditionally stable time-domain meshless method, IEEE Trans Microw Theory Tech, 58, 3, 578-586, (2010)
[11] Chen, X.; Chen, Z.; Yu, Y.; Su, D., An unconditionally stable radial point interpolation meshless method with Laguerre polynomials, IEEE Trans Antennas Propag, 59, 10, 3756-3763, (2011) · Zbl 1369.78881
[12] Mirzavand, R.; Abdipour, A.; Moradi, G.; Movahhedi, M., Full-wave semiconductor devices simulation using meshless and finite-difference time-domain approaches, IET Microw Antennas Propag, 5, 6, 685-691, (2011)
[13] Yang, S.; Yu, Y.; Chen, Z.; Ponomarenko, S., A time-domain collocation meshless method with local radial basis functions for electromagnetic transient analysis, IEEE Trans Antennas Propag, 62, 10, 5334-5338, (2014) · Zbl 1371.78328
[14] Yang, S.; Chen, Z.; Yu, Y.; Ponomarenko, S., A divergence-free meshless method based on the vector basis function for transient electromagnetic analysis, IEEE Trans Microw Theory Tech, 62, 7, 1409-1416, (2014)
[15] Yu, Y.; Chen, Z., A 3-D radial point interpolation method for meshless time-domain modeling, IEEE Trans Microw Theory Tech, 57, 8, 2015-2020, (2009)
[16] Zhu, H.; Gao, C.; Chen, H.; Chen, B.; Wang, J.; Cai, Z., Study of periodic structures at oblique incidence by radial point interpolation meshless method, IEEE Antennas Wirel Propag Lett, 14, 982-985, (2015)
[17] Itoh, T.; Ikuno, S., Interpolating moving least-squares-based meshless time-domain method for stable simulation of electromagnetic wave propagation in complex-shaped domain, IEEE Trans Magn, 52, 3, (2016)
[18] Liu, G. R., Mesh free methods, (2003), CRC Press New York · Zbl 1031.74001
[19] Viana, S. A.; Rodger, D.; Lai, H. C., Meshless local Petrov-Galerkin method with radial basis functions applied to electromagnetic, Proc IEE Sci Meas Technol, 151, 6, 449-451, (2004)
[20] Fonseca, A. R.; Corrêa, B. C.; Silva, E. J.; Mesquita, R. C., Improving the mixed formulation for meshless local Petrov-Galerkin method, IEEE Trans Magn, 46, 8, 2907-2910, (2010)
[21] Correa, B. C.; Silva, E. J.; Fonseca, A. R.; Oliveira, D. B.; Mesquita, R. C., Meshless local Petrov-Galerkin approach in solving microwave guide problems, IEEE Trans Magn, 47, 5, 1526-1529, (2011)
[22] He, W.; Liu, Z.; Gordon, R. K.; Hutchcraft, W. E.; Yang, F.; Chang, A., A comparison of the element free Galerkin method and the meshless local Petrov-Galerkin method for solving electromagnetic problems, Appl Comput Electromag J, 27, 8, 620-629, (2012)
[23] Hea, W.; Liua, Z.; Hutchcraftb, W. E.; Gordonb, R. K.; Zhanga, R.; Yanga, F., Complex problem domain based local Petrov-Galerkin meshless method for electromagnetic problems, Int J Appl Electromagn, 42, 73-83, (2013)
[24] Soares, R. D.; Moreira, F. J.S.; Mesquita, R. C.; Lowther, D. A.; Lima, N. Z., A modified meshless local Petrov-Galerkin applied to electromagnetic axisymmetric problems, IEEE Trans Magn, 50, 2, (2014)
[25] Atlurii, S. N.; Shen, S., The meshless local Petrov-Galerkin (MLPG) method: a simple & less-costly alternate to the finite element and boundary element methods, CMES, 3, 1, 11-51, (2002) · Zbl 0996.65116
[26] Zhang, Y.; Shao, K. R.; Guo, Y.; Lavers, J. D., A boundary meshless method for transient eddy current problems, IEEE Trans Magn, 41, 10, 4090-4092, (2005)
[27] Nicomedes, W. L.; Mesquita, R. C.; Moreira, F. J.S., A local boundary integral equation (LBIE) method in 2D electromagnetic wave scattering, and a meshless discretization approach, Proc SBMO/IEEE MTT-S IMOC, 133-137, (2009)
[28] Nicomedes, W. L.; Mesquita, R. C.; Moreira, F. J.S., A meshless local Petrov-Galerkin method for three-dimensional scalar problems, IEEE Trans Magn, 47, 5, 1214-1217, (2011)
[29] Soares, R. D.; Mesquita, R. C.; Moreira, F. J.S., Axisymmetric electromagnetic resonant cavity solution by a meshless local Petrov-Galerkin method, Appl Comput Electromagn J, 26, 10, 792-799, (2011)
[30] Nicomedes, W.; Mesquita, R.; Moreira, F., Calculating the band structure of photonic crystals through the meshless local Petrov-Galerkin (MLPG) method and periodic shape functions, IEEE Trans Magn, 48, 2, 551-554, (2012)
[31] Nicomedes, W. L.; Mesquita, R. C.; Moreira, F. J.S., The meshless local Petrov-Galerkin method in two-dimensional electromagnetic wave analysis, IEEE Trans Antennas Propag, 60, 4, 1957-1968, (2012) · Zbl 1369.78115
[32] Buchau, A.; Rucker, W. M., Meshfree computation of field lines across multiple domains using fast boundary element methods, IEEE Trans Magn, 51, 3, (2015) · Zbl 1342.78040
[33] Zhu, T.; Zhang, J. D.; Atluri, S. N., A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach, Comput Mech, 21, 223-235, (1998) · Zbl 0920.76054
[34] Becker, A. A., The boundary element method in engineering: a complete course, (1992), McGraw-Hill New York
[35] Zhang, M.; Lingxia, L.; Zhou, P.; Zhang, X., A novel meshfree method for electromagnetic scattering from a wire structure, PIER Online, 3, 6, 774-776, (2007)
[36] Nicomedes, W. L.; Mesquita, R. C.; Moreira, F. J.S., 2-D scattering integral field equation solution through an IMLS meshless-based approach 2010, IEEE Trans Magn, 46, 8, 2783-2786, (2010)
[37] Nicomedes, W. L.; Mesquita, R. C.; Moreira, F. J.S., An integral meshless-based approach in electromagnetic scattering, COMPEL: Int J Comput Math Electr Electron Eng, 29, 6, 1464-1473, (2010) · Zbl 1218.78041
[38] Tong, M. S.; Chew, W. C., A novel meshless scheme for solving surface integral equations with flat integral domains, IEEE Trans Antennas Propag, 60, 7, 3285-3293, (2012) · Zbl 1369.78916
[39] Tong, M. S., Meshfree solutions of volume integral equations for electromagnetic scattering by anisotropic objects, IEEE Trans Antennas Propag, 58, 3, 4249-4258, (2016) · Zbl 1369.78311
[40] Honarbakhsh, B.; Tavakoli, A., Numerical solution of the EFIE by the meshfree collocation method, Eng Anal Bound Elem, 60, 9, 153-161, (2012) · Zbl 1351.78059
[41] Honarbakhsh, B.; Tavakoli, A., Numerical solution of electromagnetic integral equations by the meshfree collocation method, Appl Comput Electromag J, 27, 9, 706-716, (2012)
[42] Honarbakhsh, B.; Tavakoli, A., Analysis of thick microstrip antennas by the meshfree collocation method, Appl Comput Electromag J, 28, 2, 99-109, (2013) · Zbl 1351.78059
[43] Ding, D. Z.; Chen, G. S.; Chen, R.; Tao, S. F.; Chen, R. S., An efficient algorithm for surface integral equation based on mesh-free scheme, IEEE Antennas Wirel Propag Lett, 13, 1541-1544, (2014)
[44] Cao, J.; Tao, S. F.; Chen, R. S., An efficient solution for volume integral equation based on meshfree scheme, IEEE Trans Antennas Propag, 14, 1618-1621, (2015)
[45] Mohammadi, E.; Dehkhoda, P.; Tavakoli, A.; Honarbakhsh, B., Shielding effectiveness of a metallic perforated enclosure by mesh-free method, IEEE Trans Electromag Compat, 58, 3, 758-765, (2016)
[46] Reddy, J., An introduction to the finite element method, (2006), McGraw-Hill New York
[47] Tai, C. T., Dyadic Green functions in electromagnetic theory, (1993), IEEE Press New York
[48] Duan, Y.; Tan, Y. J., Meshless collocation method based on Dirichlet-Neumann substructure iteration, Appl Math Comput, 166, 373-384, (2005) · Zbl 1076.65103
[49] Honarbakhsh, B.; Tavakoli, A., The meshless local boundary equation method, Appl Comput Electromag J, 27, 7, 550-559, (2012)
[50] Atluri, S. N.; Cho, J. Y.; Kim, H. G., Analysis of the beams, using the meshless local Petrov-Galerkin method, with generalized moving least squares interpolations, Comput Mech, 24, 334-347, (1999) · Zbl 0968.74079
[51] Shepard, D., A two dimensional interpolation function for irregularly spaced data, Proc 23rd Nat Conf ACM, 517-523, (1968)
[52] Schaback, R., Limit problems for interpolation by analytic radial base functions, Comp Appl Math, 212, 2, 127-149, (2008) · Zbl 1129.41002
[53] Bancroft, R., Understanding electromagnetic scattering using the moment method, (1996), Artech House Norwood
[54] Van Bladel, J., Singular electromagnetic fields and sources, (1991), IEEE Press New York
[55] Ishimaru, A., Electromagnetic wave propagation: radiation and scattering, (1991), Prentice Hall New Jersey
[56] Sadiku, M. N.O., Numerical techniques in electromagnetics, (2001), CRC Press New York · Zbl 0992.78001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.