×

Iterative boundary element method for crack analysis of two-dimensional piezoelectric semiconductor. (English) Zbl 1403.74264

Summary: Based on the well-developed boundary element methods for piezoelectric media and conductors, we present an iterative boundary element method to solve the boundary value problems in two-dimensional piezoelectric semiconductors (PSCs). The proposed method is verified by analyzing a piezoelectric semiconductor plate under multi-field load. Two typically important boundary value problems, a hole and a crack, are studied in PSC plates by using the proposed method. The stress concentration near the edge of an elliptical hole in a finite piezoelectric semiconductor plate is studied by using the single-domain boundary element method. Also, by using the sub-domain boundary element method, we analyzed how the mechanical load, electrical load, electric current density, and initial electron density affected the stress, electric displacement and electric current intensity factors near the crack tip.

MSC:

74S15 Boundary element methods applied to problems in solid mechanics
65N38 Boundary element methods for boundary value problems involving PDEs
74F15 Electromagnetic effects in solid mechanics
74R10 Brittle fracture
Full Text: DOI

References:

[1] White, D. L., Amplification of ultrasonic waves in piezoelectric semiconductors, J Appl Phys, 33, 199-200, (1962) · Zbl 0105.22802
[2] Gavini, A.; Cardona, M., Modulated piezoreflectance in semiconductors, Phys Rev B, 1, 672-682, (1970)
[3] Sen, P. K., Brillouin instability in magnetoactive n-type piezoelectric semiconductors, Phys Rev B, 21, 3604-3609, (1980)
[4] Chichibu, S. F.; Abare, A. C.; Minsky, M. S.; Keller, S.; Fleischer, S. B.; Bowers, J. E., Effective band gap inhomogeneity and piezoelectric field in ingan/gan multiquantum well structures, Appl Phys Lett, 73, 2006-2008, (1998)
[5] Wang, Z. L.; Kong, X. Y.; Ding, Y.; Gao, P.; Hughes, W. L.; Yang, R., Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces, Adv Funct Mater, 14, 943-956, (2004)
[6] Ozgur, U.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Dogan, S., A comprehensive review of zno materials and devices, J Appl Phys, 98, 04130101-041301103, (2005)
[7] Prodhomme, P. Y.; Beyawakata, A.; Bester, G., Nonlinear piezoelectricity in wurtzite semiconductors, Phys Rev B, 88, 3925-3938, (2003)
[8] Jin, F., Shear-horizontal surface waves in a half-space of piezoelectric semiconductors, Phil Mag Lett, 95, 92-100, (2015)
[9] Wang, Z. L., Nanopiezotronics, Adv Mater, 19, 889-892, (2007)
[10] Gao, Y.; Wang, Z. L., Electrostatic potential in a bent piezoelectric nanowire. the fundamental theory of nanogenerator and nanopiezotronics, Nano Lett, 7, 2499-2505, (2007)
[11] Wang, Z. L.; Wu, W., Piezotronics and piezo-phototronics: fundamentals and applications, Natl Sci Rev, 1, 62-90, (2014)
[12] Wen, X.; Wu, W.; Pan, C.; Hu, Y.; Yang, Q.; Wang, Z. L., Development and progress in piezotronics, Nano Energy, 14, 276-295, (2014)
[13] Yang, J., An anti-plane crack in a piezoelectric semiconductor, Int J Fracture, 136, L169-L174, (2005) · Zbl 1196.74229
[14] Yang, J. S.; Song, Y. C.; Soh, A. K, Analysis of a circular piezoelectric semiconductor embedded in a piezoelectric semiconductor substrate, Arch Appl Mech, 76, 381-390, (2006) · Zbl 1168.74348
[15] Hu, Y. T.; Zeng, Y.; Yang, J. S, A mode III crack in a piezoelectric semiconductor of crystals with 6 mm symmetry, Int J Solids Struct, 44, 3928-3938, (2007) · Zbl 1124.74043
[16] Sladek, J.; Sladek, V.; Pan, E.; Young, D. L., Dynamic anti-plane crack analysis in functional graded piezoelectric semiconductor crystals, CMES, 99, 273-296, (2014) · Zbl 1356.74188
[17] Sladek, J.; Sladek, V.; Bishay, P.; Garcia-Sanchez, F., Influence of electric conductivity on intensity factors for cracks in functionally graded piezoelectric semiconductors, Int J Solids Struct, 59, 79-89, (2015)
[18] Sladek, J.; Sladek, V.; Pan, E.; Wünsche, M., Fracture analysis in piezoelectric semiconductors under a thermal load, Eng Fracture Mech, 126, 27-39, (2014)
[19] Zhao, M. H.; Pan, Y. B.; Fan, C. Y.; Xu, G. T., Extended displacement discontinuity method for analysis of cracks in 2D piezoelectric semiconductors, Int J Solids Struct, 94-95, 50-59, (2016)
[20] Fan, C. Y.; Yan, Y.; Xu, G. T.; Zhao, M. H., Piezoelectric-conductor iterative method for analysis of cracks in piezoelectric semiconductors via the finite element method, Eng Fract Mech, 165, 183-196, (2016)
[21] Ding, H. J.; Wang, G. Q.; Chen, W. Q., A boundary integral formulation and 2D fundamental solutions for piezoelectric media, Comput Method Appl Mech Eng, 158, 65-80, (1998) · Zbl 0954.74077
[22] Pan, E., A BEM analysis of fracture mechanics in 2D anisotropic piezoelectric solids, Eng Anal Boundary Elem, 23, 67-76, (1999) · Zbl 1062.74639
[23] García-Sánchez, F.; Sáez, A.; Domínguez, J., Anisotropic and piezoelectric materials fracture analysis by BEM, Comput Struct, 83, 804-820, (2005)
[24] Wünsche, M.; Zhang, C.; García-Sánchez, F.; Sáez, A.; Sladek, J.; Sladek, V., Dynamic crack analysis in piezoelectric solids with non-linear electrical and mechanical boundary conditions by a time-domain BEM, Comput Method Appl Mech Eng, 200, 2848-2858, (2011) · Zbl 1230.74211
[25] Lei, J.; Wang, H. Y.; Zhang, C. Z.; Bui, T. Q.; Garcia-Sanchez, F., Comparison of several BEM-based approaches in evaluating crack-tip field intensity factors in piezoelectric materials, Int J Fracture, 189, 111-120, (2014)
[26] Brebbia, C. A., The boundary element method for engineers, (1978), Pentech Press London · Zbl 0414.65060
[27] Hammer, P. C.; Stroud, A. H., Numerical evaluation of multiple integrals, math, tables, Aids Comput, 12, 99-115, (1955)
[28] Zhao, M. H.; Li, Y.; Yan, Y.; Fan, C. Y., Singularity analysis of planar cracks in three-dimensional piezoelectric semiconductors via extended displacement discontinuity boundary integral equation method, Eng Anal Boundary Elem, 67, 115-125, (2016) · Zbl 1403.74266
[29] Ding, H. J.; Wang, G. Q.; Chen, W. Q., Fundamental solution for plane problem of piezoelectric materials, Sci China, 40, 331-336, (1997) · Zbl 0888.73048
[30] Ding, H. J.; Chen, B.; Liang, J., On the Green’s functions for two-phase transversely isotropic piezoelectric media, Int J Solids Struct, 34, 3041-3057, (1997) · Zbl 0942.74555
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.