×

Uniform asymptotics for compound Poisson processes with regularly varying jumps and vanishing drift. (English) Zbl 1403.60038

Summary: This paper addresses heavy-tailed large-deviation estimates for the distribution tail of functionals of a class of spectrally one-sided Lévy processes. Our contribution is to show that these estimates remain valid in a near-critical regime. This complements recent similar results that have been obtained for the all-time supremum of such processes. Specifically, we consider local asymptotics of the all-time supremum, the supremum of the process until exiting \([0, \infty)\), the maximum jump until that time, and the time it takes until exiting \([0, \infty)\). The proofs rely, among other things, on properties of scale functions.

MSC:

60G51 Processes with independent increments; Lévy processes
60K25 Queueing theory (aspects of probability theory)

References:

[1] Abate, J.; Whitt, W., Limits and approximations for the busy-period distribution in single-server queues, Probab. Engrg. Inform. Sci., 9, 4, 581-602 (1995) · Zbl 1336.60174
[2] Adan, I.; Resing, J., Queueing theory, (Eindhoven University of Technology (2002), Eindhoven)
[3] Asmussen, S., Subexponential asymptotics for stochastic processes: extremal behavior, stationary distributions and first passage probabilities, Ann. Appl. Probab., 8, 2, 354-374 (1998) · Zbl 0942.60034
[4] Asmussen, S., Applied Probability and Queues, Vol. 51 (2003), Springer · Zbl 1029.60001
[5] Asmussen, S.; Klüppelberg, C., Large deviations results for subexponential tails, with applications to insurance risk, Stochastic Process. Appl., 64, 1, 103-125 (1996) · Zbl 0879.60020
[6] Avram, F.; Palmowski, Z.; Pistorius, M. R., On the optimal dividend problem for a spectrally negative Lévy process, Ann. Appl. Probab., 17, 1, 156-180 (2007) · Zbl 1136.60032
[7] Baltrūnas, A.; Daley, D. J.; Klüppelberg, C., Tail behaviour of the busy period of a GI/GI/1 queue with subexponential service times, Stochastic Process. Appl., 111, 2, 237-258 (2004) · Zbl 1082.60080
[8] Bekker, R.; Boxma, O. J.; Resing, J. A.C., Lévy processes with adaptable exponent, Adv. Appl. Probab., 41, 1, 117-205 (2009) · Zbl 1169.60022
[9] Bernstein, S., Sur les fonctions absolument monotones, Acta Math., 52, 1, 1-66 (1929) · JFM 55.0142.07
[10] Bingham, N. H.; Goldie, C. M.; Teugels, J. L., Regular Variation, Vol. 27 (1989), Cambridge University Press · Zbl 0667.26003
[11] Blanchet, J.; Lam, H., Uniform large deviations for heavy-tailed queues under heavy traffic, Bol. Soc. Mat. Mexicana, 19, 3 (2013) · Zbl 1311.60104
[12] Borovkov, A. A.; Borovkov, K. A., (Asymptotic Analysis of Random Walks: Heavy-Tailed Distributions. Asymptotic Analysis of Random Walks: Heavy-Tailed Distributions, Encyclopedia of Mathematics and its Applications, vol. 118 (2008), Cambridge University Press) · Zbl 1231.60001
[13] Boxma, O. J., On the longest service time in a busy period of the M/G/1 queue, Stochastic Process. Appl., 8, 1, 93-100 (1978) · Zbl 0389.60069
[14] Cohen, J. W., Extreme value distribution for the M/G/1 and the G/M/1 queueing systems, Ann. Inst. Henri Poincaré Sec. B, 4, 1, 83-98 (1968) · Zbl 0162.49302
[15] de Meyer, A.; Teugels, J. L., On the asymptotic behaviour of the distributions of the busy period and service time in M/G/1, J. Appl. Probab., 17, 3, 802-813 (1980) · Zbl 0444.60088
[16] Dębicki, K.; Mandjes, M., Lévy-driven queues, Surv. Oper. Res. Manage. Sci., 17, 1, 15-37 (2012)
[17] Denisov, D.; Dieker, A. B.; Shneer, V., Large deviations for random walks under subexponentiality: the big-jump domain, Ann. Probab., 36, 5, 1946-1991 (2008) · Zbl 1155.60019
[18] D. Denisov, J. Kugler, Heavy traffic and heavy tails for subexponential distributions, 2014.; D. Denisov, J. Kugler, Heavy traffic and heavy tails for subexponential distributions, 2014.
[19] Durrett, R., Conditioned limit theorems for random walks with negative drift, Z. Wahrscheinlichkeitstheor. Verwandte Geb., 52, 3, 277-287 (1980) · Zbl 0416.60021
[20] Embrechts, P.; Klüppelberg, C.; Mikosch, T., Modelling Extremal Events: For Insurance and Finance, Vol. 33 (1997), Springer · Zbl 0873.62116
[21] Embrechts, P.; Veraverbeke, N., Estimates for the probability of ruin with special emphasis on the possibility of large claims, Insurance Math. Econom., 1, 1, 55-72 (1982) · Zbl 0518.62083
[22] Foss, S.; Konstantopoulos, T.; Zachary, S., Discrete and continuous time modulated random walks with heavy-tailed increments, J. Theoret. Probab., 20, 3, 581-612 (2007) · Zbl 1131.60040
[23] Foss, S.; Korshunov, D.; Zachary, S., An Introduction to Heavy-Tailed and Subexponential Distributions (2013), Springer · Zbl 1274.62005
[24] Goldie, C. M.; Klüppelberg, C., Subexponential distributions, A Practical Guide to Heavy Tails: Statistical Techniques and Applications, 435-459 (1998) · Zbl 0923.62021
[25] Gut, A., Stopped Random Walks (1988), Springer · Zbl 0634.60061
[26] Hubalek, F.; Kyprianou, E., Old and new examples of scale functions for spectrally negative Lévy processes, (Dalang, R.; Dozzi, M.; Russo, F., Seminar on Stochastic Analysis, Random Fields and Applications VI. Seminar on Stochastic Analysis, Random Fields and Applications VI, Progress in Probability, vol. 63 (2011), Springer), 119-145 · Zbl 1274.60148
[27] Keilson, J., Exponential spectra as a tool for the study of server-systems with several classes of customers, J. Appl. Probab., 15, 1, 162-170 (1978) · Zbl 0386.60072
[28] Klüppelberg, C.; Kyprianou, A. E.; Maller, R. A., Ruin probabilities and overshoots for general Lévy insurance risk processes, Ann. Appl. Probab., 14, 4, 1766-1801 (2004) · Zbl 1066.60049
[29] Kugler, J.; Wachtel, V., Upper bounds for the maximum of a random walk with negative drift, J. Appl. Probab., 50, 4, 1131-1146 (2013) · Zbl 1293.60052
[30] Kuznetsov, A.; Kyprianou, A. E.; Rivero, V., The theory of scale functions for spectrally negative Lévy processes, (Lévy Matters II (2013), Springer), 97-186 · Zbl 1261.60047
[31] Kyprianou, A. E., Introductory Lectures on Fluctuations of Lévy Processes with Applications (2014), Springer · Zbl 1384.60003
[32] Maulik, K.; Zwart, B., Tail asymptotics for exponential functionals of Lévy processes, Stochastic Process. Appl., 116, 2, 156-177 (2006) · Zbl 1090.60046
[33] Olvera-Cravioto, M.; Blanchet, J.; Glynn, P. W., On the transition from heavy traffic to heavy tails for the M/G/1 queue: the regularly varying case, Ann. Appl. Probab., 21, 2, 645-668 (2011) · Zbl 1216.41033
[34] Prokhorov, Yu. V., An extremal problem in probability theory, Theory Probab. Appl., 4, 2, 201-203 (1959) · Zbl 0093.15102
[35] C.-H. Rhee, J. Blanchet, B. Zwart, Sample path large deviations for heavy-tailed Lévy processes and random walks. arxiv preprint, 2016. arxiv:1606.02795; C.-H. Rhee, J. Blanchet, B. Zwart, Sample path large deviations for heavy-tailed Lévy processes and random walks. arxiv preprint, 2016. arxiv:1606.02795
[36] Takács, L., Combinatorial Methods in the Theory of Stochastic Processes, Vol. 126 (1967), John Wiley & Sons · Zbl 0189.17602
[37] Whitt, W., Heavy Traffic Limit Theorems for Queues: A Survey, 307-350 (1974), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg · Zbl 0295.60081
[38] Whitt, W., Stochastic-Process Limits: An Introduction to Stochastic-Process Limits and their Application to Queues (2002), Springer Science & Business Media · Zbl 0993.60001
[39] Zwart, A. P., Tail asymptotics for the busy period in the GI/G/1 queue, Math. Oper. Res., 26, 3, 485-493 (2001) · Zbl 1073.90510
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.