×

Cluster algebras, invariant theory, and Kronecker coefficients. I. (English) Zbl 1403.13037

In the present paper, the author relates the \(m\)-truncated Kronecker products of symmetric functions to the semi-invariant rings of a family of quiver representations. The author finds cluster algebra structures for these semi-invariant rings when \(m=2\). Each \(g\)-vector cone \(G_{\diamond _{l}}\) of these cluster algebras controls the \(2\)-truncated Kronecker products for all symmetric functions of degree not greater than \(l\). As a consequence, each relevant Kronecker coefficient is the difference of the number of the lattice points inside two rational polytopes. The author also gives explicit description of all \(G_{\diamond _{l}}\)’s. As an application, the author computes some invariant rings.

MSC:

13F60 Cluster algebras
16G20 Representations of quivers and partially ordered sets
13A50 Actions of groups on commutative rings; invariant theory
20C30 Representations of finite symmetric groups
52B20 Lattice polytopes in convex geometry (including relations with commutative algebra and algebraic geometry)

Software:

Normaliz

References:

[1] Bruns, W.; Ichim, B., Normaliz - computing normalizations of affine semigroups with contributions by C. Söger, available from
[2] Berenstein, A.; Fomin, S.; Zelevinsky, A., Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J., 126, 1, 1-52 (2005) · Zbl 1135.16013
[3] Derksen, H.; Fei, J., General presentations of algebras, Adv. Math., 278, 210-237 (2015) · Zbl 1361.16006
[4] Derksen, H.; Weyman, J., Semi-invariants of quivers and saturation for Littlewood-Richardson coefficients, J. Amer. Math. Soc., 13, 3, 467-479 (2000) · Zbl 0993.16011
[5] Derksen, H.; Weyman, J., The combinatorics of quiver representation, Ann. Inst. Fourier (Grenoble), 61, 3, 1061-1131 (2011) · Zbl 1271.16016
[6] Derksen, H.; Weyman, J.; Zelevinsky, A., Quivers with potentials and their representations I, Selecta Math. (N.S.), 14, 1, 59-119 (2008) · Zbl 1204.16008
[7] Derksen, H.; Weyman, J.; Zelevinsky, A., Quivers with potentials and their representations II, J. Amer. Math. Soc., 23, 3, 749-790 (2010) · Zbl 1208.16017
[8] Domokos, M.; Zubkov, A., Semi-invariants of quivers as determinants, Transform. Groups, 6, 1, 9-24 (2001) · Zbl 0984.16023
[9] Dvir, Y., On the Kronecker product of \(S_n\) characters, J. Algebra, 154, 125-140 (1993) · Zbl 0848.20006
[10] Fei, J., Constructing coherently \(G\)-invariant modules, J. Algebra, 446, 154-175 (2016) · Zbl 1460.16031
[11] Fei, J., Cluster algebras and semi-invariant rings I. Triple flags, to appear Proc. Lond. Math. Soc. · Zbl 1396.13019
[12] Fei, J., Cluster algebras and semi-invariant rings II. Projections, Math. Z. (2016)
[13] Fomin, S.; Pylyavskyy, P., Tensor diagrams and cluster algebras, Adv. Math., 300, 717-787 (2016) · Zbl 1386.13062
[14] Fomin, S.; Zelevinsky, A., Cluster algebras. I. Foundations, J. Amer. Math. Soc., 15, 2, 497-529 (2002) · Zbl 1021.16017
[15] Fomin, S.; Zelevinsky, A., Cluster algebras. IV. Coefficients, Compos. Math., 143, 1, 112-164 (2007) · Zbl 1127.16023
[16] Fulton, W., Intro to Toric Variety, Graduate Texts in Mathematics, vol. 129 (1991), Springer-Verlag: Springer-Verlag New York, A first course, Readings in Mathematics · Zbl 0744.22001
[17] Fulton, W.; Harris, J., Representation Theory, Graduate Texts in Mathematics, vol. 129 (1991), Springer-Verlag: Springer-Verlag New York, A first course, Readings in Mathematics · Zbl 0744.22001
[18] Igusa, K.; Orr, K.; Todorov, G.; Weyman, J., Cluster complexes via semi-invariants, Compos. Math., 145, 1001-1034 (2009) · Zbl 1180.14047
[19] Kac, V. G., Infinite root systems, representations of graphs and invariant theory I, Invent. Math., 56, 57-92 (1980) · Zbl 0427.17001
[20] King, A. D., Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. (2), 45, 180, 515-530 (1994) · Zbl 0837.16005
[21] Kraft, H.; Procesi, C., Classical invariant theory: a primer (1996)
[22] Knutson, A.; Tao, T., The honeycomb model of \(GL_n(C)\) tensor products. I. Proof of the saturation conjecture, J. Amer. Math. Soc., 12, 4, 1055-1090 (1999) · Zbl 0944.05097
[23] Littlewood, D. E., The Kronecker product of symmetric group representations, J. Lond. Math. Soc., 31, 89-93 (1956) · Zbl 0090.24803
[24] Macdonald, I. G., Symmetric Functions and Hall Polynomials, Oxford Math. Monographs (1995) · Zbl 0487.20007
[25] Muller, G., \(A = U\) for locally acyclic cluster algebras, SIGMA Symmetry Integrability Geom. Methods Appl., 10, Article 094 pp. (2014), 8 pages · Zbl 1327.13079
[27] Pak, I.; Panova, G., Unimodality via Kronecker products, J. Algebraic Combin., 40, 4, 1103-1120 (2014) · Zbl 1304.05153
[28] Plamondon, P., Generic bases for cluster algebras from the cluster category, Int. Math. Res. Not. IMRN, 2013, 10, 2368-2420 (2013) · Zbl 1317.13055
[29] Patera, J.; Sharp, R. T., Generating functions for plethysms of finite and continuous groups, J. Phys. A, 13, 2, 397-416 (1980) · Zbl 0427.22013
[30] Popov, V. L.; Vinberg, E. B., Invariant theory, (Algebraic Geometry. IV. Algebraic Geometry. IV, Encyclopaedia of Mathematical Sciences, vol. 55 (1994), Springer-Verlag: Springer-Verlag Berlin), 123-284 · Zbl 0788.00015
[31] Riese, A. (2008), (with G.E. Andrews, P. Paule), Omega Package, RISC Linz
[32] Schofield, A., Semi-invariants of quivers, J. Lond. Math. Soc. (2), 43, 3, 385-395 (1991) · Zbl 0779.16005
[33] Schofield, A., General representations of quivers, Proc. Lond. Math. Soc. (3), 65, 1, 46-64 (1992) · Zbl 0795.16008
[34] Schofield, A.; Van den Bergh, M., Semi-invariants of quivers for arbitrary dimension vectors, Indag. Math. (N.S.), 12, 1, 125-138 (2001) · Zbl 1004.16012
[35] Schrijver, A., Theory of Linear and Integer Programming, Wiley-Interscience Series in Discrete Mathematics (1986), John Wiley & Sons, Ltd.: John Wiley & Sons, Ltd. Chichester · Zbl 0665.90063
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.