×

Bone ingrowth on the surface of endosseous implants. I: Mathematical model. (English) Zbl 1402.92249

Summary: Osseointegration, understood as an intimate apposition and interdigitation of bone to a biomaterial, is usually regarded as a major condition for the long-term clinical success of bone implants. Clearly, the anchorage of an implant to bone tissue critically relies on the formation of new bone between the implant and the surface of the old peri-implant bone and depends on factors such as the surface microtopography, chemical composition and geometry of the implant, the properties of the surrounding bone and the mechanical loading process. The main contribution of this work is the proposal of a new mathematical framework based on a set of reaction-diffusion equations that try to model the main biological interactions occurring at the surface of implants and is able to reproduce most of the above mentioned biological features of the osseointegration phenomenon. This is a two-part paper. In this first part, a brief biological overview is initially given, followed by the presentation and discussion of the model. In addition, two-dimensional finite element simulations of the bone-ingrowth process around a dental implant with two different surface properties are included to assess the validity of the model. Numerical solutions show the ability of the model to reproduce features such as contact/distance osteogenesis depending upon the specific surface microtopography. In Part II [the authors, ibid. 260, No. 1, 13–26 (2009; Zbl 1402.92250)], two simplified versions of the whole model are proposed. An analytical study of the stability of fixed points as well as the existence of travelling wave-type solutions has been done with both simplified models, providing a significant insight into the behaviour of the model and giving clues to interpret the effectiveness of recently proposed clinical therapies. Furthermore, we also show that, although the mechanical state of the tissue is not directly taken into account in the model equations, it is possible to analyse in detail the effect that mechanical stimulation would have on the predictions of the model. Finally, numerical simulations are also included in the second part of the paper, with the aim of looking into the influence of implant geometry on the osseointegration process.

MSC:

92C50 Medical applications (general)
92C10 Biomechanics
74L15 Biomechanical solid mechanics
74S05 Finite element methods applied to problems in solid mechanics

Citations:

Zbl 1402.92250
Full Text: DOI

References:

[1] Ambard, D.; Swider, P., A predictive mechano-biological model of the bone-implant healing, Eur. J. mech. A solids, 25, 927-937, (2006) · Zbl 1110.74040
[2] Andreykiv, A.; Prendergast, P.J.; van Keulen, F.; Swieszkowski, W.; Rozing, P.M., Bone ingrowth simulation for a concept glenoid component design, J. biomech., 38, 1023-1033, (2005)
[3] Bailón-Plaza, A.; van der Meulen, M.C.H., A mathematical framework to study the effects of growth factor influences on fracture healing, J. theor. biol., 212, 191-209, (2001)
[4] Berglundh, T.; Abrahamsson, I.; Lang, N.P., De novo alveolar bone formation adjacent to endosseous implants. A model study in the dog, Clin. oral implants res., 14, 251-262, (2003)
[5] Bobyn, J.D.; Mortimer, E.S.; Glassman, A.H.; Engh, C.A.; Miller, J.E.; Brooks, C.E., Producing and avoiding stress shielding: laboratory and clinical observations of non-cemented total hip arthroplasty, Clin. orthop. relat. res., 274, 79-96, (1992)
[6] Bolander, M.E., Regulation of fracture repair by growth factors, Proc. soc. exp. biol. med., 200, 165-170, (1992)
[7] Bostrom, M.P., Expression of bone morphogenetic proteins in fracture healing, Clin. orthop., 355S, 116-123, (1998)
[8] Brunette, D.M., The effects of implant surface topography on the behaviour of cells, Int. J. oral maxillofac. implants, 3, 231-246, (1988)
[9] Brunski, J.B., In vivo bone response to biomechanical loading at the bone/dental-implant interface, Adv. dent. res., 13, 99-119, (1999)
[10] Cai, A.Q.; Landman, K.A.; Hughes, B.D., Multi-scale modeling of a wound-healing cell migration assay, J. theor. biol., 245, 576-594, (2007) · Zbl 1451.92063
[11] Claes, L.E.; Heigele, C.A.; Neidlinger-Wilke, C.; Kaspar, D.; Seidl, W.; Margevicius, K.J.; Augat, P., Effects of mechanical factors on the fracture healing process, Clin. othop. relat. res., 355, S132-147, (1998)
[12] Coffey, R.J.; Russell, W.E.; Barnard, J.A., Pharmacokinetics of TGF beta with emphasis on effects on liver and gut, Ann. N. Y. acad. sci., 593, 285-291, (1990)
[13] Cullinane, D.M.; Salisbury, K.T.; Alkhiary, Y.; Eisenberg, S.; Gerstenfeld, L.; Einhorn, T.A., Effects of the local mechanical environment on vertebrate tissue differentiation during repair: does repair recapitulate development?, J. exp. biol., 206, 2459-2471, (2003)
[14] Daas, M.; Dubois, G.; Bonnet, A.S.; Lipinski, P.; Rignon-Bret, C., A complete finite element model of a mandibular implant-retained overdenture with two implants: comparison between rigid and resilient attachment configurations, Med. eng. phys., 30, 2, 218-225, (2008)
[15] Dasch, J.R.; Pace, D.R.; Waegell, W.; Inenaga, D.; Ellingsworth, L., Monoclonal antibodies recognizing transforming growth factor-beta. bioactivity, neutralization and transforming growth factor-beta 2 affinity purification, J. immunol., 142, 1536-1541, (1989)
[16] Davies, J.E., Understanding peri-implant endosseous healing, J. dent. educ., 67, 932-949, (2003)
[17] Dimitriou, R.; Tsiridis, E.; Giannoudis, P.V., Current concepts of molecular aspects of bone healing, Inj. int. J. care injured, 36, 1392-1404, (2005)
[18] Doblaré, M.; García-Aznar, J.M., On the numerical modelling of growth, differentiation and damage in structural living tissues, Arch. comput. methods eng., 11, 1-45, (2005)
[19] Edelman, E.R.; Nugent, M.A.; Karnovsky, M.J., Perivascular and intravenous administration of basic fibroblast growth factor: vascular and solid organ deposition, Proc. natl. acad. sci. USA, 90, 1513-1517, (1993)
[20] Elmengaard, B.; Bechtold, J.E.; Søballe, K., In vivo study of the effect of RGD treatment on bone ongrowth on press-fit titanium alloy implants, Biomaterials, 26, 3521-3526, (2005)
[21] Farré, J.; Roura, S.; Prat-Vidal, C.; Soler-Botija, C.; Llach, A.; Molina, C.E.; Hove-Madsen, L.; Cairó, J.J.; Gòdia, F.; Bragós, R.; Cinca, J.; Bayes-Genis, A., FGF-4 increases in vitro expansion rate of human adult bone marrow-derived mesenchymal stem cells, Growth factors, 25, 71-76, (2007)
[22] Fiedler, J.; Etzel, N.; Brenner, R.E., To go or not to go: migration of human mesenchymal progenitor cells stimulated by isoforms of PDGF, J. cell. biochem., 93, 990-998, (2004)
[23] Fiedler, J.; Leucht, F.; Waltenberger, J.; Dehio, C.; Brenner, R.E., VEGF and plgf-1 stimulate chemotactic migration of human mesenchymal progenitor cells, Biochem. biophys. res. commun., 344, 561-568, (2005)
[24] Fiedler, J.; Brill, C.; Blum, W.F.; Brenner, R.E., IGF-I and IGF-II stimulate directed cell migration of bone-marrow-derived human mesenchymal progenitor cells, Biochem. biophys. res. commun., 345, 1177-1183, (2006)
[25] Friedl, P.; Zänker, K.S.; Bröcker, E.B., Cell migration strategies in 3-D extracellular matrix: differences in morphology, cell matrix interactions, and integrin function, Micros. res. tech., 43, 369-378, (1998)
[26] Ganong, W.F., Review of medical physiology, (2005), McGraw-Hill New York
[27] García-Aznar, J.M.; Kuiper, J.H.; Gómez-Benito, M.J.; Doblaré, M.; Richardson, J.B., Computational simulation of fracture healing: influence of interfragmentary movement on the callus growth, J. biomech., 40, 1467-1476, (2007)
[28] Geris, L.; Andreykiv, A.; Oosterwyck, H.V.; Sloten, J.V.; van Keulen, F.; Duyck, J.; Naert, I., Numerical simulation of tissue differentiation around loaded titanium implants in a bone chamber, J. biomech., 37, 763-769, (2004)
[29] Geris, L.; Gerisch, A.; Sloten, J.V.; Weiner, R.; Oosterwyck, H.V., Angiogenesis in bone fracture healing: a bioregulatory model, J. theor. biol., 251, 137-158, (2008) · Zbl 1397.92126
[30] Goldsmith, H.L.; Turitto, V.T., Rheological aspects of thrombosis and haemostasis: basic principles and applications, Thromb. haemost., 55, 415-435, (1986)
[31] Gómez-Benito, M.J.; García-Aznar, J.M.; Kuiper, J.H.; Doblaré, M., Influence of fracture gap size on the pattern of long bone healing: a computational study, J. theor. biol., 235, 105-119, (2005) · Zbl 1445.92023
[32] Goodacre, C.J.; Kan, J.Y.; Rungcharassaeng, K., Clinical complications of osseointegrated implants, J. prosthet. dent., 81, 537-552, (1999)
[33] Goodman, P.D.; Barlow, E.T.; Crapo, P.M.; Mohammad, S.F.; Solen, K.A., Computational model of device-induced thrombosis and thromboembolism, Ann. biomed. eng., 33, 780-797, (2005)
[34] Götz, H.E.; Müller, M.; Emmel, A.; Holzwarth, U.; Erben, R.G.; Stangl, R., Effect of surface finish on the osseointegration of laser-treated titanium alloy implants, Biomaterials, 25, 4057-4064, (2004)
[35] Gruler, H.; Bültmann, B.D., Analysis of cell movement, Blood cells, 10, 61-77, (1984)
[36] Haas, R.; Polak, C.; Fürhauser, R.; Mailath-Pokorny, G.; Dörtbudak, O.; Watzek, G., A long-term follow-up of 76 bränemark single-tooth implants, Clin. oral implants res., 13, 38-43, (2002)
[37] Hayakawa, T.; Yoshinarib, M.; Kibac, H.; Yamamotoc, H.; Nemotoa, K.; Jansen, J.A., Trabecular bone response to surface roughened and calcium phosphate (ca-P) coated titanium implants, Biomaterials, 23, 1025-1031, (2002)
[38] Hughes, T.J.R., The finite element method, (2000), Dover Publications Inc. New York · Zbl 1191.74002
[39] Izadpanah, R.; Trygg, C.; Patel, B.; Kriedt, C.; Dufour, J.; Gimble, J.M.; Bunnell, B.A., Biological properties of mesenchymal stem cells derived from bone marrow and adipose tissue, J. cell. biochem., 99, 1285-1297, (2006)
[40] Jasty, M.; Bragdon, C.; Burke, D.; O’Connor, D.; Lowenstein, J.; Harris, W.H., In vivo skeletal response to porous-surfaced implants subjected to small induced motions, J. bone jt. surg. am., 79, 707-714, (1997)
[41] Jones, D.; Leivseth, G.; Tenbosh, J., Mechano-reception in osteoblast-like cells, J. biochem. cell biol., 73, 525-532, (1995)
[42] Joos, U.; Wiesmann, H.P.; Szuwart, T.; Meyer, U., Mineralization at the interface of implants, Int. J. oral maxillofac. surg., 35, 783-790, (2006)
[43] Kark, L.R.; Karp, J.M.; Davies, J.E., Platelet releasate increases the proliferation and migration of bone marrow-derived cells cultured under osteogenic conditions, Clin. oral implants res., 17, 321-327, (2006)
[44] Kikuchi, L.; Park, J.Y.; Victor, C.; Davies, J.E., Platelet interactions with calcium – phosphate-coated surfaces, Biomaterials, 26, 5285-5295, (2005)
[45] Lakey, L., Akella, R., Ranieri, J.P., 2000. Angiogenesis: implications for tissue repair. In: Tissue Engineering. em squared Inc., Toronto, pp. 137-142.; Lakey, L., Akella, R., Ranieri, J.P., 2000. Angiogenesis: implications for tissue repair. In: Tissue Engineering. em squared Inc., Toronto, pp. 137-142.
[46] Lee, D.H.; Park, B.J.; Lee, M.S.; Lee, J.W.; Kim, J.K.; Yang, H.C.; Park, J.C., Chemotactic migration of human mesenchymal stem cells and MC3T3-E1 osteoblast-like cells induced by COS-7 cell line expressing rhbmp-7, Tissue eng., 12, 1577-1586, (2006)
[47] Liao, S.; Tong, R.; Dong, J., Influence of anisotropy on peri-implant stress and strain in complete mandible model from CT, Comput. med. imaging graph., 32, 53-60, (2008)
[48] Lind, M., Growth factor stimulation of bone healing. effects on osteoblasts, osteomies and implant fixation, Acta orthop. scand. suppl., 283, 2-37, (1998)
[49] Lind, M.; Overgaard, S.; Nguyen, T.; Ongpipattanakul, B.; Bunger, C.; Søballe, K., Transforming growth factor-\(\beta\) stimulates bone ongrowth. hydroxyapatite-coated implants studied in dogs, Acta orthop. scand., 67, 611-616, (1996)
[50] Linkhart, T.A.; Mohan, S.; Baylink, D.J., Growth factors for bone growth and repair: IGF, TGF\(\beta\) and BMP, Bone, 19, 1S-12S, (1996)
[51] Liu, X., Niebur, G.L., 2007. Bone ingrowth into a porous coated implant predicted by a mechano-regulatory tissue differentiation algorithm. Biomech. Model Mechanobiol., doi:10.1007/s10237-007-0100-3.; Liu, X., Niebur, G.L., 2007. Bone ingrowth into a porous coated implant predicted by a mechano-regulatory tissue differentiation algorithm. Biomech. Model Mechanobiol., doi:10.1007/s10237-007-0100-3.
[52] Lossdörfer, S.; Schwartz, Z.; Wang, L.; Lohmann, C.H.; Turner, J.D.; Wieland, M.; Cochran, D.L.; Boyan, B.D., Microrough implant surface topographies increase osteogenesis by reducing osteoclast formation and activity, J. biomed. mater. res. A, 70, 361-369, (2004)
[53] Maini, P.K.; McElwain, D.L.S.; Leavesley, D.I., Traveling wave model to interpret a wound-healing cell migration assay for human peritoneal mesothelial cells, Tissue eng., 10, 475-482, (2004)
[54] Marco, F.; Milena, F.; Gianluca, G.; Vittoria, O., Peri-implant osteogenesis in health and osteoporosis, Micron, 36, 630-644, (2005)
[55] Mareddy, S.; Crawford, R.; Brooke, G.; Xiao, Y., Clonal isolation and characterization of bone marrow stromal cells from patients with osteoarthritis, Tissue eng., 13, 819-829, (2007)
[56] Matsuo, M.; Nakamura, T.; Kishi, Y.; Takahashi, K., Microvascular changes after placement of titanium implants: scanning electron microscopy observations of machined and titanium plasma-sprayed implants in dogs, J. periodontol., 70, 1330-1338, (1999)
[57] Moreo, P., García-Aznar, J.M., Doblaré, M., 2007a. Modeling mechanosensing and its effect on the migration and proliferation of adherent cells. Acta Biomater., doi:10.1016/j.actbio.2007.10.014.; Moreo, P., García-Aznar, J.M., Doblaré, M., 2007a. Modeling mechanosensing and its effect on the migration and proliferation of adherent cells. Acta Biomater., doi:10.1016/j.actbio.2007.10.014.
[58] Moreo, P.; Pérez, M.A.; García-Aznar, J.M.; Doblaré, M., Modelling the mechanical behaviour of living bony interfaces, Comput. methods appl. mech. eng., 196, 3300-3314, (2007) · Zbl 1173.74357
[59] Moreo, P., García-Aznar, J.M., Doblaré, M., 2008. Bone ingrowth on the surface of endosseous implants. Part 2: influence of mechanical stimulation, type of bone and geometry. J. Theor. Biol., under review.; Moreo, P., García-Aznar, J.M., Doblaré, M., 2008. Bone ingrowth on the surface of endosseous implants. Part 2: influence of mechanical stimulation, type of bone and geometry. J. Theor. Biol., under review.
[60] Naert, I.; Koutsikakis, G.; Duyck, J.; Quirynen, M.; Jacobs, R.; van Steenbergue, D., Biologic outcome of single-implant restorations as tooth replacements: a long-term follow-up study, Clin. implant dent. relat. res., 2, 209-218, (2000)
[61] Nygren, H.; Eriksson, C.; Lausmaa, J., Adhesion and activation of platelets and polymorphonuclear granulocyte cells at tio_{2} surfaces, J. lab. clin. med., 129, 35-46, (1997)
[62] Nygren, H.; Tengvall, P.; Lundström, I., The initial reactions of tio_{2} with blood, J. biomed. mater. res., 35, 487-492, (1997)
[63] Oates, T.W.; Valderrama, P.; Bischof, M.; Nedir, R.; Jones, A.; Simpson, J.; Toutenburg, H.; Cochran, D.L., Enhanced implant stability with a chemically modified SLA surface: a randomized pilot study, Int. J. oral maxillofac. implants, 22, 755-760, (2007)
[64] Osborn, J.F.; Newesely, H., Dynamic aspects of the implant – bone interface, (), 111-123
[65] Park, J.Y.; Gemmell, C.H.; Davies, J.E., Platelet interactions with titanium: modulation of platelet activity by surface topography, Biomaterials, 22, 2671-2682, (2001)
[66] Pavlin, D.; Gluhak-Heinrich, J., Effect of mechanical loading on periodontal cells, Crit. rev. oral biol. med., 12, 414-424, (2001)
[67] Pavlin, D.; Dove, S.B.; Zadro, R.; Gluhak-Heinrich, J., Mechanical loading stimulates differentiation of periodontal osteoblasts in a mouse osteoinduction model: effect on type I collagen and alkaline phosphatase genes, Calcif. tissue int., 67, 163-172, (2000)
[68] Pérez, M.A., Moreo, P., García-Aznar, J.M., Doblaré, M., 2007. Computational simulation of dental implant osseointegration through resonance frequency analysis. J. Biomech., doi:10.1016/j.jbiomech.2007.09.013.; Pérez, M.A., Moreo, P., García-Aznar, J.M., Doblaré, M., 2007. Computational simulation of dental implant osseointegration through resonance frequency analysis. J. Biomech., doi:10.1016/j.jbiomech.2007.09.013.
[69] Pilliar, R.M.; Lee, J.M.; Maniatopopulus, C., Observations on the effect of movement on bone ingrowth into porous-surfaced implants, Clin. orthop. rel. res., 208, 108-113, (1986)
[70] Probst, A.; Spiegel, H.U., Cellular mechanisms of bone repair, J. invest. surg., 10, 77-86, (1997)
[71] Puleo, D.A.; Nanci, A., Understanding and controlling the bone-implant interface, Biomaterials, 20, 2311-2321, (1999)
[72] Reina, J.M.; García-Aznar, J.M.; Domínguez, J.; Doblaré, M., Numerical estimation of bone density and elastic constants distribution in a human mandible, J. biomech., 40, 828-836, (2007)
[73] Roberts, W.E., Bone – tissue interface, J. dent. educ., 52, 802-809, (1988)
[74] Rosier, R.N.; O’Keefe, R.J.; Hicks, D.G., The potential role of transforming growth factor beta in fracture healing, Clin. orthop., 355S, 294-300, (1998)
[75] Rubin, C.T.; McLeod, K.J., Promotion of bony ingrowth by frequency-specific, low amplitude mechanical strain, Clin. orthop. relat. res., 298, 165-174, (1994)
[76] Schenk, R.; Hunziker, E.B., Histologic and ultrastructural features of fracture healing, (), 117-146
[77] Schierano, G.; Canuto, R.A.; Navone, R., Biological factors involved in the osseointegration of oral titanium implants with different surfaces: a pilot study in minipigs, J. periodontol., 76, 1710-1720, (2005)
[78] Schmitt, A.; Zarb, G.A., The longitudinal clinical effectiveness of osseointegrated dental implants for single tooth replacement, Int. J. prosthodont., 6, 197-202, (1993)
[79] Schneider, I.C.; Haugh, J.M., Quantitative elucidation of a distinct spatial gradient-sensing mechanisms in fibroblasts, J. cell biol., 171, 883-892, (2005)
[80] Sela, M.N.; Badihi, L.; Rosen, G.; Steinberg, D.; Kohavi, D., Adsorption of human plasma proteins to modified titanium surfaces, Clin. oral implants res., 18, 630-638, (2007)
[81] Sennerby, L.; Thomsen, P.; Ericson, L.E., Early tissue response to titanium implants inserted in rabbit bone. part I. light microscopic observations, J. mater. sci. mater. med., 4, 240-250, (1993)
[82] Søballe, K.; Brockstedt-Rasmussen, H.; Hansen, E.S.; Bünger, C., Hydroxyapatite coating modifies implant membrane formation, Acta orthop. scand., 63, 2, 128-140, (1992)
[83] Søballe, K.; Hansen, E.S.; Brockstedt-Rasmussen, H.; Jørgensen, P.H.; Bünger, C., Tissue ingrowth into titanium and hydroxyapatite-coated implants during stable and unstable mechanical conditions, J. orthop. res., 10, 285-299, (1992)
[84] Swider, P.; Pedrono, A.; Mouzin, O.; Søballe, K.; Bechtold, J.E., Biomechanical analysis of the shear behaviour adjacent to an axially loaded implant, J. biomech., 39, 1873-1882, (2006)
[85] Szmukler-Moncler, S.; Salama, H.; Reingewirtz, Y.; Dubruille, J.H., Timing of loading and effect of micromotion on bone – dental implant interface: review of experimental literature, J. biomed. mater. res., 43, 192-203, (1998)
[86] Vander, A.; Sherman, J.; Luciano, D., Human physiology: the mechanisms of body function, (1998), WCB Mc-Graw Hill Boston, MA
[87] Zienkiewicz, O.C., Taylor, R.L., 2000. The Finite Element Method, fifth ed. Solid Mechanics, vol. 2. Butterworth-Heinemann.; Zienkiewicz, O.C., Taylor, R.L., 2000. The Finite Element Method, fifth ed. Solid Mechanics, vol. 2. Butterworth-Heinemann. · Zbl 0991.74002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.