×

Quantum lattice gauge fields and groupoid \(\mathrm{C}^{\ast}\)-algebras. (English) Zbl 1402.81202

Summary: We present an operator-algebraic approach to the quantization and reduction of lattice field theories. Our approach uses groupoid \(\mathrm{C}^{\ast}\)-algebras to describe the observables. We introduce direct systems of Hilbert spaces and direct systems of (observable) \(\mathrm{C}^{\ast}\)-algebras, and, dually, corresponding inverse systems of configuration spaces and (pair) groupoids. The continuum and thermodynamic limit of the theory can then be described by taking the corresponding limits, thereby keeping the duality between the Hilbert space and observable \(\mathrm{C}^{\ast}\)-algebra on the one hand, and the configuration space and the pair groupoid on the other. Since all constructions are equivariant with respect to the gauge group, the reduction procedure applies in the limit as well.

MSC:

81T25 Quantum field theory on lattices
81T70 Quantization in field theory; cohomological methods
46L05 General theory of \(C^*\)-algebras
18B40 Groupoids, semigroupoids, semigroups, groups (viewed as categories)
81T27 Continuum limits in quantum field theory
46L60 Applications of selfadjoint operator algebras to physics

References:

[1] Aastrup, J.; Grimstrup, JM, Intersecting quantum gravity with noncommutative geometry: a review, SIGMA, 8, 018, (2012) · Zbl 1251.83017
[2] Aastrup, J.; Grimstrup, JM; Nest, R., On spectral triples in quantum gravity. II, J. Noncommut. Geom., 3, 47-81, (2009) · Zbl 1158.46312 · doi:10.4171/JNCG/30
[3] Ashtekar, A., Lewandowski, J.: Representation theory of analytic holonomy \(\text{C}^{\ast }\)- algebras. Knots Quantum Gravity 21-61 (1994) · Zbl 0827.46055
[4] Araki, H.; Woods, EJ, Representations of the canonical commutation relations describing a nonrelativistic infinite free Bose gas, J. Math. Phys., 4, 637-662, (1963) · doi:10.1063/1.1704002
[5] Ashtekar, A.; Lewandowski, J.; Marolf, D.; Mourão, J.; Thiemann, T., Coherent state transforms for spaces of connections, J. Funct. Anal., 135, 519-551, (1996) · Zbl 0837.22014 · doi:10.1006/jfan.1996.0018
[6] Baez, JC, Generalized measures in gauge theory, Lett. Math. Phys., 31, 213-223, (1994) · Zbl 0798.58009 · doi:10.1007/BF00761713
[7] Baez, JC, Spin networks in gauge theory, Adv. Math., 117, 253-272, (1996) · Zbl 0843.58012 · doi:10.1006/aima.1996.0012
[8] Buneci, MR, Groupoid \(\text{ C }^{\ast }\)-algebras, Surv. Math. Appl., 1, 71-98, (2006) · Zbl 1130.22002
[9] Dirac, PAM, Generalized Hamiltonian dynamics, Can. J. Math., 2, 129-148, (1950) · Zbl 0036.14104 · doi:10.4153/CJM-1950-012-1
[10] Fischer, E.; Rudolph, G.; Schmidt, M., A lattice gauge model of singular Marsden-Weinstein reduction. Part I. Kinematics, J. Geom. Phys., 57, 1193-1213, (2007) · Zbl 1114.37030 · doi:10.1016/j.geomphys.2006.09.008
[11] Grundling, H.; Rudolph, G., QCD on an infinite lattice, Commun. Math. Phys., 318, 717-766, (2013) · Zbl 1271.81177 · doi:10.1007/s00220-013-1674-5
[12] Grundling, H.; Rudolph, G., Dynamics for QCD on an infinite lattice, Commun. Math. Phys., 349, 1163-1202, (2017) · Zbl 1358.81157 · doi:10.1007/s00220-016-2733-5
[13] Hall, B., The Segal-Bargmann “coherent state” transform for compact lie groups, J. Funct. Anal., 122, 103-151, (1994) · Zbl 0838.22004 · doi:10.1006/jfan.1994.1064
[14] Huebschmann, J., Singular Poisson-Kähler geometry of stratified Kähler spaces and quantization, Trav. Math., 19, 27-63, (2011) · Zbl 1228.32031
[15] Huebschmann, J.; Rudolph, G.; Schmidt, M., A gauge model for quantum mechanics on a stratified space, Commun. Math. Phys., 286, 459-494, (2009) · Zbl 1170.81038 · doi:10.1007/s00220-008-0693-0
[16] Kijowski, J., Symplectic geometry and second quantization, Rep. Math. Phys., 11, 97-109, (1977) · Zbl 0355.53016 · doi:10.1016/0034-4877(77)90022-2
[17] Kijowski, J.; Rudolph, G., On the Gauss law and global charge for QCD, J. Math. Phys., 43, 1796-1808, (2002) · Zbl 1059.81177 · doi:10.1063/1.1447310
[18] Kijowski, J.; Rudolph, G., Charge superselection sectors for QCD on the lattice, J. Math. Phys., 46, 032303, (2004) · Zbl 1076.81036 · doi:10.1063/1.1851604
[19] Kijowski, J.; Okołów, A., A modification of the projective construction of quantum states for field theories, J. Math. Phys., 58, 062303, (2017) · Zbl 1366.81269 · doi:10.1063/1.4989550
[20] Kogut, J.; Susskind, L., Hamiltonian formulation of Wilson’s lattice gauge theories, Phys. Rev. D, 11, 395-408, (1975) · doi:10.1103/PhysRevD.11.395
[21] Landsman, NP, Rieffel induction as generalized quantum Marsden-Weinstein reduction, J. Geom. Phys., 15, 285-319, (1995) · Zbl 0819.58012 · doi:10.1016/0393-0440(94)00034-2
[22] Landsman, N.P.: Mathematical Topics Between Classical and Quantum Mechanics. Springer, Berlin (1998) · doi:10.1007/978-1-4612-1680-3
[23] Lanéry, S.; Thiemann, T., Projective limits of state spaces I. Classical formalism, J. Geom. Phys., 111, 6-39, (2017) · Zbl 1366.18001 · doi:10.1016/j.geomphys.2016.10.010
[24] Lanéry, S.; Thiemann, T., Projective limits of state spaces II. Quantum formalism, J. Geom. Phys., 116, 10-51, (2017) · Zbl 1373.81251 · doi:10.1016/j.geomphys.2017.01.011
[25] Lanéry, S.; Thiemann, T., Projective limits of state spaces III. Toy-models, J. Geom. Phys., 123, 98-126, (2018) · Zbl 1382.81211 · doi:10.1016/j.geomphys.2017.08.007
[26] Lanéry, S.; Thiemann, T., Projective limits of state spaces IV. Fractal label sets, J. Geom. Phys., 123, 127-155, (2018) · Zbl 1382.81212 · doi:10.1016/j.geomphys.2017.08.008
[27] Lanéry, S., Projective limits of state spaces: quantum field theory without a vacuum, EJTP, 14, 1-20, (2018)
[28] Lewandowski, J., Topological measure and graph-differential geometry on the quotient space of connections, Int. J. Theoret. Phys., 3, 207-211, (1994)
[29] Maclane, S.: Categories for the Working Mathematician. Springer, Berlin (1998) · Zbl 0705.18001
[30] Marsden, J.; Weinstein, A., Reduction of symplectic manifolds with symmetry, Rep. Math. Phys., 5, 121-130, (1974) · Zbl 0327.58005 · doi:10.1016/0034-4877(74)90021-4
[31] Marolf, D.; Mourão, JM, On the support of the Ashtekar-Lewandowski measure, Comm. Math. Phys., 170, 583-605, (1995) · Zbl 0846.58065 · doi:10.1007/BF02099150
[32] Muhly, PS; Renault, JN; Williams, DP, Equivalence and isomorphism for groupoid \(\text{ C }^{\ast }\)- algebras, J. Oper. Theory, 17, 3-22, (1987) · Zbl 0645.46040
[33] Okołów, A., Construction of spaces of kinematic quantum states for field theories via projective techniques, Class. Quantum Grav., 30, 195003, (2013) · Zbl 1277.83043 · doi:10.1088/0264-9381/30/19/195003
[34] Paterson, A.: Groupoids, Inverse Semigroups, and their Operator Algebras. Birkhäuser, Basel (1999) · Zbl 0913.22001 · doi:10.1007/978-1-4612-1774-9
[35] Renault, J.: A Groupoid Approach to C\(^\ast \)-Algebras. Springer, Berlin (1980) · Zbl 0433.46049 · doi:10.1007/BFb0091072
[36] Rendall, A., Comment on a paper of A. Ashtekar and C. J. Isham, Class. Quantum Grav., 10, 605-608, (1993) · Zbl 0788.53075 · doi:10.1088/0264-9381/10/3/019
[37] Ribes, L., Zalesskii, P.: Profinite Groups. Springer, Berlin (2010) · Zbl 1197.20022 · doi:10.1007/978-3-642-01642-4
[38] Rieffel, MA, Induced representation of C\(^\ast \)-algebras, Adv. Math., 13, 176-257, (1974) · Zbl 0284.46040 · doi:10.1016/0001-8708(74)90068-1
[39] Rieffel, M.A.: Quantization and operator algebras. XIIth International Congress of Mathematical Physics (ICMP ’97) (Brisbane), 254-260, Int. Press, Cambridge, MA (1999) · Zbl 1253.53088
[40] Rudin, W.: Functional Analysis. McGraw-hill, Inc., NY (1991) · Zbl 0867.46001
[41] Schwartz, L.: Radon Measures. Oxford University Press, Oxford (1973) · Zbl 0298.28001
[42] Yngvason, J., The role of type III factors in quantum field theory, Rep. Math. Phys., 55, 135-147, (2005) · Zbl 1140.81427 · doi:10.1016/S0034-4877(05)80009-6
[43] Wilson, KG, Confinement of quarks, Phys. Rev. D, 10, 2445-2459, (1974) · doi:10.1103/PhysRevD.10.2445
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.