×

Fourth- and higher-order interface tracking via mapping and adjusting regular semianalytic sets represented by cubic splines. (English) Zbl 1402.76146

Summary: This work is a further development and the culmination along our research line of interface tracking in two dimensions [the author and P. L. F. Liu, J. Comput. Phys. 227, No. 8, 4063–4088 (2008; Zbl 1135.76041); the author, SIAM J. Numer. Anal. 51, No. 5, 2822–2850 (2013; Zbl 1282.65113); the author and A. Fogelson, SIAM J. Sci. Comput. 36, No. 5, A2369–A2400 (2014; Zbl 1426.76584); the author and A. Fogelson, SIAM J. Numer. Anal. 54, No. 2, 530–560 (2016; Zbl 1332.76066)]. Previously, we have proposed an analytic framework for explicit interface tracking and a fourth-order interface tracking method. In this paper, we continue our approach to propose a new method, called the cubic MARS method, that features (1) a solid theoretical foundation consisting of well developed concepts from distinct branches of mathematics, (2) a representation of the interface with cubic splines, (3) a novel algorithm for Boolean operations on linear/curvilinear polygons, and (4) fourth-, sixth-, and eighth-order accuracy via a refined control of the relation between the Eulerian grid size \(h\) and a Lagrangian length scale \(h_L\) of interface markers. Volume conservation of the cubic MARS method also has convergence rates at 4, 6, and 8. A simple analysis and numerical results from several benchmark problems show that the cubic MARS method is superior to existing interface tracking methods in terms of accuracy and efficiency. In particular, for the single-vortex test and the deformation test, errors of an eighth-order cubic MARS method are close to machine precision on a 128-by-128 Eulerian grid! Currently the new method does not tackle topological changes of the interface, but its theoretical foundation provides a solid footing for future treatments of such phenomena.

MSC:

76T30 Three or more component flows
65D07 Numerical computation using splines
34A26 Geometric methods in ordinary differential equations
76M25 Other numerical methods (fluid mechanics) (MSC2010)

Software:

MARS; mctoolbox; GePUP
Full Text: DOI

References:

[1] H. T. Ahn and M. Shashkov, Multi-material interface reconstruction on generalized polyhedral meshes, J. Comput. Phys., 226 (2007), pp. 2096–2132. · Zbl 1388.76232
[2] H. T. Ahn and M. Shashkov, Adaptive moment-of-fluid method, J. Comput. Phys., 228 (2009), pp. 2792–2821. · Zbl 1282.76147
[3] E. Aulisa, S. Manservisi, and R. Scardovelli, A surface marker algorithm coupled to an area-preserving marker redistribution method for three-dimensional interface tracking, J. Comput. Phys., 197 (2004), pp. 555–584. · Zbl 1079.76605
[4] J. W. Banks, T. Aslam, and W. J. Rider, On sub-linear convergence for linearly degenerate waves in capturing schemes, J. Comput. Phys., 227 (2008), pp. 6985–7002. · Zbl 1145.65061
[5] S. Burris and H. P. Sankappanavar, A Course in Universal Algebra, Springer, New York, 2012.
[6] J. C. Butcher, Numerical Methods for Ordinary Differential Equations, 3rd ed., John Wiley & Sons, New York, 2016. · Zbl 1354.65004
[7] R. Comminal, J. Spangenberg, and J. H. Hattel, Cellwise conservative unsplit advection for the volume of fluid method, J. Comput. Phys., 283 (2015), pp. 582–608. · Zbl 1351.76211
[8] M. Coquerelle and S. Glockner, A fourth-order accurate curvature computation in a level set framework for two-phase flows subjected to surface tension forces, J. Comput. Phys., 305 (2016), pp. 838–876. · Zbl 1349.76053
[9] S. V. Diwakar, Sarit K. Das, and T. Sundararajan, A quadratic spline based interface (QUASI) reconstruction algorithm for accurate tracking of two-phase flows, J. Comput. Phys., 228 (2009), pp. 9107–9130. · Zbl 1388.76243
[10] D. P. Dobkin, D. L. Souvaine, and C. J. Van Wyk, Decomposition and intersection of simple splinegons, Algorithmica, 3 (1988), pp. 473–485. · Zbl 0648.68062
[11] J. R. Dormand and P. J. Prince, High order embedded Runge-Kutta formulae, J. Comput. Appl. Math., 7 (1981), pp. 67–75. · Zbl 0449.65048
[12] V. Dyadechko and M. Shashkov, Moment-of-Fluid Interface Reconstruction, Technical report LA-UR-05-7571, Los Alamos National Laboratory, 2005; also available online from . · Zbl 1220.76048
[13] V. Dyadechko and M. Shashkov, Reconstruction of multi-material interfaces from moment data, J. Comput. Phys., 227 (2008), pp. 5361–5384. · Zbl 1220.76048
[14] A. Eigenwillig, L. Kettner, E. Schomer, and N. Wolpert, Exact, efficient, and complete arrangement computation for cubic curves, Comput. Geom., 35 (2006), pp. 36–73. · Zbl 1124.65021
[15] D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell, A hybrid particle level set method for improved interface capturing, J. Comput. Phys., 183 (2002), pp. 83–116. · Zbl 1021.76044
[16] I. Ginzburg and G. Wittum, Two-phase flows on interface refined grids modeled with VOF, staggered finite volumes, and spline interpolants, J. Comput. Phys., 166 (2001), pp. 302–335. · Zbl 1030.76035
[17] S. Givant and P. Halmos, Introduction to Boolean Algebras, Springer, New York, 2009. · Zbl 1168.06001
[18] D. J. E. Harvie and D. F. Fletcher, A new volume of fluid advection algorithm: The stream scheme, J. Comput. Phys., 162 (2000), pp. 1–32. · Zbl 0964.76068
[19] M. Herrmann, A balanced force refined level set grid method for two-phase flows on unstructured flow solver grids, J. Comput. Phys., 227 (2008), pp. 2674–2706. · Zbl 1388.76252
[20] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed., SIAM, Philadelphia, 2002. · Zbl 1011.65010
[21] C. W. Hirt and B. D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39 (1981), pp. 201–225. · Zbl 0462.76020
[22] E. V. Huntington, Sets of independent postulates for the algebra of logic, Trans. Amer. Math. Soc., 5 (1904), pp. 288–309. · JFM 35.0087.02
[23] Z. Jibben and M. Herrmann, An arbitrary order Runge-Kutta discontinuous Galerkin approach to reinitialization for banded conservative level sets, J. Comput. Phys., 349 (2017), pp. 453–473. · Zbl 1380.65270
[24] L. Kettner, K. Mehlhorn, S. Pion, S. Schirra, and C. Yap, Classroom examples of robustness problems in geometric computations, Comput. Geom., 40 (2008), pp. 61–78. · Zbl 1135.65311
[25] K. Kuratowski and A. Mostowski, Set Theory, with an Introduction to Descriptive Set Theory, Stud. Logic Found. Math. 86, North-Holland, Amsterdam, 1976. · Zbl 0337.02034
[26] V. Le Chenadec and H. Pitsch, A 3D unsplit forward/backward volume-of-fluid approach and coupling to the level set method, J. Comput. Phys., 233 (2013), pp. 10–33. · Zbl 1286.76104
[27] C.-Y. Li, S. V. Garimella, and J. E. Simpson, Fixed-grid front-tracking algorithm for solidification prblems, part I: Method and validation, Numer. Heat Transfer B, 43 (2003), pp. 117–141.
[28] J. López, J. Hernández, P. Gómez, and F. Faura, A volume of fluid method based on multidimensional advection and spline interface reconstruction, J. Comput. Phys., 195 (2004), pp. 718–742. · Zbl 1115.76358
[29] J. López, J. Hernández, P. Gómez, and F. Faura, An improved PLIC-VOF method for tracking thin fluid structures in incompressible two-phase flows, J. Comput. Phys., 208 (2005), pp. 51–74. · Zbl 1115.76359
[30] H. MacNeille, Partially ordered sets, Trans. Amer. Math. Soc., 42 (1937), pp. 416–460. · Zbl 0017.33904
[31] J. W. Milnor, Topology from the Differentiable Viewpoint, Princeton Landmarks Math. Phys., Princeton University Press, Princeton, NJ, 1997. · Zbl 1025.57002
[32] S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79 (1988), pp. 12–49. · Zbl 0659.65132
[33] A. A. G. Requicha, Mathematical Models of Rigid Solid Objects, Techn. Memor. 28, The University of Rochester, Rochester, NY, 1977.
[34] W. J. Rider and D. B. Kothe, Reconstructing volume tracking, J. Comput. Phys., 141 (1998), pp. 112–152. · Zbl 0933.76069
[35] M. Rudman, Volume-tracking methods for interfacial flow calculations, Internat. J. Numer. Methods Fluids, 24 (1997), pp. 671–691. · Zbl 0889.76069
[36] H. Sagan, An elementary proof that Schoenberg’s space-filling curve is nowhere differentiable, Math. Mag., 65 (1992), pp. 125–128. · Zbl 0779.26007
[37] A. Sard, The measure of the critical values of differentiable maps, Bull. Amer. Math. Soc., 48 (1942), pp. 883–890. · Zbl 0063.06720
[38] R. Scardovelli and S. Zaleski, Interface reconstruction with least-square fit and split Eulerian-Lagrangian advection, Internat. J. Numer. Methods Fluids, 41 (2003), pp. 251–274. · Zbl 1047.76080
[39] A. Seidenberg, A new decision method for elementry algebra, Ann. of Math., 60 (1954), pp. 365–374. · Zbl 0056.01804
[40] M. Sussman, A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. L. Welcome, An adaptive level set approach for incompressible two-phase flows, J. Comput. Phys., 148 (1999), pp. 81–124. · Zbl 0930.76068
[41] M. Sussman and M. Y. Hussaini, A discontinuous spectral element method for the level set equation, J. Sci. Comput., 19 (2003), pp. 479–500. · Zbl 1035.65107
[42] M. Sussman and E. Puckett, A coupled level set and volume-of-fluid method for computing \(3\)D and axisymmetric incompressible two-phase flows, J. Comput. Phys., 162 (2000), pp. 301–337. · Zbl 0977.76071
[43] A. Tarski, über additive and multiplikative Mengenkörper und Mengenfunktionen, Sprawozdania z Posiedzeń Towarzystwa Naukowego Warszawskiego, Wydzial III Nauk Matematyczno-fizycznych, 30 (1937), pp. 151–181. · JFM 63.0831.06
[44] A. Tarski, A Decision Method for Elementary Algebra and Geometry, U.S. Air Force Project Rand R-109, The Rand Corporation, Santa Monica, CA, 1948. · Zbl 0035.00602
[45] G. Tryggvason, B. Bunner, D. Juric, W. Tauber, S. Nas, J. Han, N. Al-Rawahi., and Y.-J. Jan, A front-tracking method for the computations of multiphase flow, J. Comput. Phys., 169 (2001), pp. 708–759. · Zbl 1047.76574
[46] J. H. Verner, Explicit Runge–Kutta methods with estimates of the local truncation error, SIAM J. Numer. Anal., 15 (1978), pp. 772–790. · Zbl 0403.65029
[47] Y. Wang, S. Simakhina, and M. Sussman, A hybrid level set-volume constraint method for incompressible two-phase flow, J. Comput. Phys., 231 (2012), pp. 6348–6471.
[48] G. D. Weymouth and D. K.-P. Yue, Conservative volume-of-fluid method for free-surface simulations on Cartesian-grids, J. Comput. Phys., 229 (2010), pp. 2853–2865. · Zbl 1307.76064
[49] S. T. Zalesak, Fully multi-dimensional flux corrected transport algorithms for fluid flow, J. Comput. Phys., 31 (1979), pp. 335–362. · Zbl 0416.76002
[50] Q. Zhang, On a family of unsplit advection algorithms for volume-of-fluid methods, SIAM J. Numer. Anal., 51 (2013), pp. 2822–2850. · Zbl 1282.65113
[51] Q. Zhang, On donating regions: Lagrangian flux through a fixed curve, SIAM Rev., 55 (2013), pp. 443–461. · Zbl 1302.37016
[52] Q. Zhang, On generalized donating regions: Classifying Lagrangian fluxing particles through a fixed curve in the plane, J. Math. Anal. Appl., 424 (2015), pp. 861–877. · Zbl 1326.53010
[53] Q. Zhang, GePUP: Generic projection and unconstrained PPE for fourth-order solutions of the incompressible Navier-Stokes equations with no-slip boundary conditions, J. Sci. Comput., 67 (2016), pp. 1134–1180. · Zbl 1342.76037
[54] Q. Zhang, HFES: A height function method with explicit input and signed output for high-order estimations of curvature and unit vectors of planar curves, SIAM J. Numer. Anal., 55 (2017), pp. 1024–1056. · Zbl 1362.65028
[55] Q. Zhang and A. Fogelson, Fourth-order interface tracking in two dimensions via an improved polygonal area mapping method, SIAM J. Sci. Comput., 36 (2014), pp. A2369–A2400. · Zbl 1426.76584
[56] Q. Zhang and A. Fogelson, MARS: An analytic framework of interface tracking via mapping and adjusting regular semi-algebraic sets, SIAM J. Numer. Anal., 54 (2016), pp. 530–560. · Zbl 1332.76066
[57] Q. Zhang and P. L.-F. Liu, A new interface tracking method: The polygonal area mapping method, J. Comput. Phys., 227 (2008), pp. 4063–4088. · Zbl 1135.76041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.