×

Iteration of certain exponential-like meromorphic functions. (English) Zbl 1402.37057

Summary: The dynamics of functions \(f_\lambda(z)=\lambda\frac{\mathrm{e}^{z}}{z+1}\text{ for }z\in\mathbb{C},\,\lambda>0\) is studied showing that there exists \(\lambda^*>0\) such that the Julia set of \(f_\lambda\) is disconnected for \(0<\lambda<\lambda^*\) whereas it is the whole Riemann sphere for \(\lambda>\lambda^*\). Further, for \(0<\lambda<\lambda^*\), the Julia set is a disjoint union of two topologically and dynamically distinct completely invariant subsets, one of which is totally disconnected. The union of the escaping set and the backward orbit of \(\infty\) is shown to be disconnected for \(0<\lambda<\lambda^*\) whereas it is connected for \(\lambda>\lambda^*\). For complex \(\lambda\), it is proved that either all multiply connected Fatou components ultimately land on an attracting or parabolic domain containing the omitted value of the function or the Julia set is connected. In the latter case, the Fatou set can be empty or consists of Siegel disks. All these possibilities are shown to occur for suitable parameters. Meromorphic functions \(E_n(z)=\mathrm{e}^{z}(1+z+\frac{z^2}{2!}+\cdots+\frac{z^n}{n!})^{-1}\), which we call exponential-like, are studied as a generalization of \(f(z)=\frac{\mathrm{e}^{z}}{z+1}\) which is nothing but \(E_1(z)\). This name is justified by showing that \(E_n\) has an omitted value 0 and there are no other finite singular value. In fact, it is shown that there is only one singularity over 0 as well as over \(\infty\) and both are direct. Non-existence of Herman rings are proved for \(\lambda E_n\).

MSC:

37F10 Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets
30D05 Functional equations in the complex plane, iteration and composition of analytic functions of one complex variable
37F50 Small divisors, rotation domains and linearization in holomorphic dynamics
Full Text: DOI

References:

[1] Baker, IN; Kotus, J.; Lü, Y., Iterates of meromorphic functions III, pre-periodic domains, Ergod. Theory Dyn. Syst., 11, 603-618, (1991) · Zbl 0774.30023 · doi:10.1017/S0143385700006386
[2] Bergweiler, W., Iteration of meromorphic functions, Bull. Am. Math. Soc. (N.S.), 29, 151-188, (1993) · Zbl 0791.30018 · doi:10.1090/S0273-0979-1993-00432-4
[3] Bergweiler, W.; Eremenko, A., On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoam., 11, 355-373, (1995) · Zbl 0830.30016 · doi:10.4171/RMI/176
[4] Bergweiler, W.; Rippon, P. J.; Stallard, G. M., Dynamics of meromorphic functions with direct or logarithmic singularities, Proc. London Math. Soc. (3), 97, 368-400, (2008) · Zbl 1174.37011 · doi:10.1112/plms/pdn007
[5] Branner B and Fagella N, Quasiconformal Surgery in Holomorphic Dynamics (2014) (Cambridge: Cambridge University Press) · Zbl 1319.37003
[6] Devaney, RL; Durkin, MB, The exploding exponential and other chaotic bursts in complex dynamics, Am. Math. Mon., 98, 217-233, (1991) · Zbl 0742.30025 · doi:10.1080/00029890.1991.11995730
[7] Domínguez, P., Dynamics of transcendental meromorphic functions, Ann. Acad. Sci. Fenn. Math., 23, 225-250, (1998) · Zbl 0892.30025
[8] Fagella, N.; Garijo, A., Capture zones of the family of functions \(\lambda z^m \exp (z)\), Int. J. Bifurc. Chaos Appl. Sci. Eng., 13, 2623-2640, (2003) · Zbl 1052.37038 · doi:10.1142/S0218127403008120
[9] Herring, ME, Mapping properties of Fatou components, Ann. Acad. Sci. Fenn. Math., 23, 263-274, (1984) · Zbl 0910.30025
[10] Nayak T, On Fatou components and omitted values, Geometry, groups and dynamics, Contemporary Mathematics - American Mathematical Society (2015) (Providence RI) vol. 639, 349-358 · Zbl 1360.37116
[11] Nayak, T., Herman rings of meromorphic maps with an omitted value, Proc. Am. Math. Soc., 144, 587-597, (2016) · Zbl 1408.37080 · doi:10.1090/proc12715
[12] Nayak, T.; Prasad, MGP, Julia sets of Joukowski-exponential maps, Complex Anal. Oper. Theory, 8, 1061-1076, (2014) · Zbl 1291.37065 · doi:10.1007/s11785-013-0335-1
[13] Nayak, T.; Zheng, J. H., Omitted values and dynamics of transcendental meromorphic functions, J. Lond. Math. Soc. (2), 83, 121-136, (2011) · Zbl 1209.37054 · doi:10.1112/jlms/jdq065
[14] Niamsup, P., Julia sets of certain exponential functions, J. Math. Anal. Appl., 250, 598-609, (2000) · Zbl 0967.30016 · doi:10.1006/jmaa.2000.7002
[15] Rottenfusser, G.; Rückert, J.; Rempe, L.; Schleicher, D., Dynamic rays of bounded-type entire functions, Ann. Math. (2), 173, 77-125, (2011) · Zbl 1232.37025 · doi:10.4007/annals.2011.173.1.3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.