×

Improved energy methods for nonlocal diffusion problems. (English) Zbl 1402.35290

Summary: We prove an energy inequality for nonlocal diffusion operators of the following type, and some of its generalisations: \[ L u(x) := \int_{\mathbb{R}^N} K(x,y)(u(y)-u(x))dy, \] where \(L\) acts on a real function \(u\) defined on \(\mathbb{R}^N\), and we assume that \(K(x,y)\) is uniformly strictly positive in a neighbourhood of \(x=y\). The inequality is a nonlocal analogue of the Nash inequality, and plays a similar role in the study of the asymptotic decay of solutions to the nonlocal diffusion equation \(\partial_t u = Lu\) as the Nash inequality does for the heat equation. The inequality allows us to give a precise decay rate of the \(L^p\) norms of \(u\) and its derivatives. As compared to existing decay results in the literature, our proof is perhaps simpler and gives new results in some cases.

MSC:

35R09 Integro-partial differential equations
35B40 Asymptotic behavior of solutions to PDEs
45A05 Linear integral equations
35A23 Inequalities applied to PDEs involving derivatives, differential and integral operators, or integrals
45G10 Other nonlinear integral equations

References:

[1] F. Andreu-Vaillo, J. M. Mazón, J. D. Rossi and J. J. Toledo-Melero, Nonlocal Diffusion Problems American Mathematical Society; Real Sociedad Matemática Española, 2010, http://www.worldcat.org/isbn/9780821852309. · Zbl 1214.45002
[2] A. Arnold, J. A. Carrillo, L. Desvillettes, J. Dolbeault, A. Jüngel, C. Lederman, P. A. Markowich, G. Toscani and C. Villani, Entropies and equilibria of Many-Particle systems: An essay on recent research, Monatshefte für Mathematik, 142 (2004), 35-43, URL http://dx.doi.org/10.1007/s00605-004-0239-2. · Zbl 1063.35109
[3] D. Bakry and M. Émery, Diffusions hypercontractives, in Séminaire de Probabilités XIX 1983/84 (eds. J. Azéma and M. Yor), vol. 1123 of Lecture Notes in Mathematics, Springer Berlin / Heidelberg, 1985, chapter 13, 177-206, URL http://dx.doi.org/10.1007/bfb0075847. · Zbl 0561.60080
[4] M. Bonforte, J. Dolbeault, G. Grillo and J. L. Vázquez, Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities, Proceedings of the National Academy of Sciences, 107 (2010), 16459-16464, URL http://dx.doi.org/10.1073/pnas.1003972107. · Zbl 1256.35026
[5] C. Brändle and A. de Pablo, Nonlocal heat equations: decay estimates and Nash inequalities, 2015, http://arxiv.org/abs/1312.4661. · Zbl 1395.45018
[6] E. A. Carlen, S. Kusuoka and D. W. Stroock, Upper bounds for symmetric Markov transition functions, Annales de l’Institute Henri Poincaré. Probabilités et statistiques, 23 (1987), 245-287, URL http://eudml.org/doc/77309. · Zbl 0634.60066
[7] J. A. Carrillo, A. Jüngel, P. A. Markowich, G. Toscani and A. Unterreiter, Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Monatshefte für Mathematik, 133 (2001), 1-82, URL http://dx.doi.org/10.1007/s006050170032. · Zbl 0984.35027
[8] D. Chafaï, Entropies, convexity, and functional inequalities, Journal of Mathematics of Kyoto University, 44 (2004), 325-363, URL http://projecteuclid.org/euclid.kjm/1250283556. · Zbl 1079.26009
[9] E. Chasseigne, M. Chaves and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equations, Journal de Mathématiques Pures et Appliquées, 86 (2006), 271-291, URL http://dx.doi.org/10.1016/j.matpur.2006.04.005. · Zbl 1126.35081
[10] C. Cortázar, J. Coville, M. Elgueta and S. Martínez, A nonlocal inhomogeneous dispersal process, Journal of Differential Equations, 241 (2007), 332-358, URL http://www.sciencedirect.com/science/article/pii/S0022039607002082. · Zbl 1127.45003
[11] C. Cortázar; M. Elgueta; J. García-Melián; S. Martínez, Stationary sign changing solutions for an inhomogeneous nonlocal problem, Indiana Univ. Math. J., 60, 209-232 (2011) · Zbl 1245.45001 · doi:10.1512/iumj.2011.60.4385
[12] C. Cortázar, M. Elgueta, J. García-Melián and S. Martínez, Finite mass solutions for a nonlocal inhomogeneous dispersal equation, Discrete and Continuous Dynamical Systems, 35 (2015), 1409-1419, URL http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=10560. · Zbl 1302.45001
[13] C. Cortázar, M. Elgueta, J. García-Melián and S. Martínez, An inhomogeneous nonlocal diffusion problem with unbounded steps, Journal of Evolution Equations, 16 (2016), 209-232, URL http://dx.doi.org/10.1007/s00028-015-0299-x. · Zbl 1386.35415
[14] C. Cortázar, M. Elgueta and J. D. Rossi, Nonlocal diffusion problems that approximate the heat equation with Dirichlet boundary conditions, Israel Journal of Mathematics, 170 (2009), 53-60, URL http://dx.doi.org/10.1007/s11856-009-0019-8. · Zbl 1178.35026
[15] C. Cortázar, M. Elgueta, J. D. Rossi and N. Wolanski, How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems, Archive for Rational Mechanics and Analysis, 187 (2008), 137-156, URL http://dx.doi.org/10.1007/s00205-007-0062-8. · Zbl 1145.35060
[16] L. Desvillettes and C. Villani, On the trend to global equilibrium for spatially inhomogeneous kinetic systems: the Boltzmann equation, Inventiones mathematicae, 159 (2004), 245-316, URL http://dx.doi.org/10.1007/s00222-004-0389-9. · Zbl 1162.82316
[17] S. N. Ethier and T. G. Kurtz, Markov Processes: Characterization and Convergence Wiley Series in Probability and Statistics, Wiley, 1986, URL http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0471081868. · Zbl 0592.60049
[18] M. -H. Giga, Y. Giga and J. Saal, Nonlinear Partial Differential Equations vol. 79 of Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc. , Boston, MA, 2010, URL http://dx.doi.org/10.1007/978-0-8176-4651-6, Asymptotic behavior of solutions and self-similar solutions. · Zbl 1215.35001
[19] L. Gross, Logarithmic sobolev inequalities, American Journal of Mathematics, 97 (1975), 1061-1083, URL http://www.jstor.org/stable/2373688. · Zbl 0318.46049
[20] L. I. Ignat and J. D. Rossi, A nonlocal convection-diffusion equation, Journal of Functional Analysis, 251 (2007), 399-437, URL http://dx.doi.org/10.1016/j.jfa.2007.07.013. · Zbl 1149.35009
[21] L. I. Ignat and J. D. Rossi, Refined asymptotic expansions for nonlocal diffusion equations, Journal of Evolution Equations, 8 (2008), 617-629, URL http://dx.doi.org/10.1007/s00028-008-0372-9. · Zbl 1178.35128
[22] L. I. Ignat and J. D. Rossi, Decay estimates for nonlocal problems via energy methods, Journal de Mathématiques Pures et Appliquées, 92 (2009), 163-187, URL http://dx.doi.org/10.1016/j.matpur.2009.04.009. · Zbl 1173.35363
[23] P. Michel, S. Mischler and B. Perthame, General entropy equations for structured population models and scattering, Comptes Rendus Mathematique, 338 (2004), 697-702, URL http://dx.doi.org/10.1016/j.crma.2004.03.006. · Zbl 1049.35070
[24] P. Michel, S. Mischler and B. Perthame, General relative entropy inequality: An illustration on growth models, Journal de Mathématiques Pures et Appliquées, 84 (2005), 1235-1260, URL http://www.sciencedirect.com/science/article/pii/S0021782405000528. · Zbl 1085.35042
[25] S. Mischler and I. Tristani, Uniform semigroup spectral analysis of the discrete, fractional and classical Fokker-Planck equations, J. Éc. Polytech. Math., 4 (2017), 389-433, URL http://arxiv.org/abs/1507.04861. · Zbl 1420.47026
[26] A. Molino and J. D. Rossi, Nonlocal diffusion problems that approximate a parabolic equation with spatial dependence, Zeitschrift für angewandte Mathematik und Physik67 (2016), Art. 41, 14 pp, URL http://dx.doi.org/10.1007/s00033-016-0649-8. · Zbl 1406.35141
[27] J. Nash, Continuity of solutions of parabolic and elliptic equations, URL http://dx.doi.org/10.2307/2372841. · Zbl 0096.06902
[28] F. Otto and C. Villani, Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality, J. Funct. Anal., 173 (2000), 361-400, URL http://dx.doi.org/10.1006/jfan.1999.3557. · Zbl 0985.58019
[29] T. Rey and G. Toscani, Large-time behavior of the solutions to Rosenau-type approximations to the heat equation, SIAM Journal on Applied Mathematics, 73 (2013), 1416-1438, URL http://dx.doi.org/10.1137/120876290. · Zbl 1278.35022
[30] M. E. Schonbek, Decay of solution to parabolic conservation laws, Communications in Partial Differential Equations, 5 (1980), 449-473, URL http://dx.doi.org/10.1080/0360530800882145. · Zbl 0476.35012
[31] J.-W. Sun; W.-T. Li; F.-Y. Yang, Approximate the Fokker-Planck equation by a class of nonlocal dispersal problems, Nonlinear Analysis: Theory, Methods & Applications, 74, 3501-3509 (2011) · Zbl 1219.35317 · doi:10.1016/j.na.2011.02.034
[32] G. Toscani, A Rosenau-type approach to the approximation of the linear Fokker-Planck equation, 2017, http://arxiv.org/abs/1703.10909. · Zbl 1405.65100
[33] C. Villani, A review of mathematical topics in collisional kinetic theory, in Handbook of Mathematical Fluid Dynamics, (eds. S. Friedlander and D. Serre), Elsevier, Amsterdam, Netherlands; Boston, U.S.A., 1 (2002), 71-305, URL http://www.umpa.ens-lyon.fr/ {}cvillani/GZPDF/B01.Handbook.pdf.gz. · Zbl 1170.82369
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.