×

Weak-strong uniqueness for the compressible Navier-Stokes equations with a hard-sphere pressure law. (English) Zbl 1402.35222

Summary: We consider the Navier-Stokes equations with a pressure function satisfying a hard-sphere law. That means the pressure, as a function of the density, becomes infinite when the density approaches a finite critical value. Under some structural constraints imposed on the pressure law, we show a weak-strong uniqueness principle in periodic spatial domains. The method is based on a modified relative entropy inequality for the system. The main difficulty is that the pressure potential associated with the internal energy of the system is largely dominated by the pressure itself in the area close to the critical density. As a result, several terms appearing in the relative energy inequality cannot be controlled by the total energy.

MSC:

35Q35 PDEs in connection with fluid mechanics
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
Full Text: DOI

References:

[1] Berthelin, F.; Degond, P.; Delitala, M.; etal., A model for the formation and evolution of traffic jams, Arch Ration Mech Anal, 187, 185-220, (2008) · Zbl 1153.90003 · doi:10.1007/s00205-007-0061-9
[2] Berthelin, F.; Degond, P.; Blanc, V.; etal., A traffic-ow model with constraints for the modeling of traffic jams, Math Models Methods Appl Sci, 18, 1269-1298, (2008) · Zbl 1197.35159 · doi:10.1142/S0218202508003030
[3] Bogovski, M. E., Solution of some vector analysis problems connected with operators div and grad (in Russian), Trudy Sem S L Sobolev, 80, 5-40, (1980) · Zbl 0479.58018
[4] Bresch, D.; Desjardins, B.; Zatorska, E., Two-velocity hydrodynamics in fluid mechanics, part II: Existence of global k-entropy solutions to the compressible Navier-Stokes systems with degenerate viscosities, J Math Pures Appl (9), 104, 801-836, (2015) · Zbl 1359.35125 · doi:10.1016/j.matpur.2015.05.004
[5] Bresch, D.; Perrin, C.; Zatorska, E., Singular limit of a Navier-Stokes system leading to a free/congested zones two-phase model, C R Math Acad Sci Paris, 352, 685-690, (2014) · Zbl 1302.35293 · doi:10.1016/j.crma.2014.06.009
[6] Carnahan, N. F.; Starling, K. E., Equation of state for nonattracting rigid spheres, J Chem Phys, 51, 635-636, (1969) · doi:10.1063/1.1672048
[7] Degond, P.; Hua, J., Self-organized hydrodynamics with congestion and path formation in crowds, J Comput Phys, 237, 299-319, (2013) · Zbl 1286.93026 · doi:10.1016/j.jcp.2012.11.033
[8] Degond, P.; Hua, J.; Navoret, L., Numerical simulations of the Euler system with congestion constraint, J Comput Phys, 230, 8057-8088, (2011) · Zbl 1408.76379 · doi:10.1016/j.jcp.2011.07.010
[9] Feireisl, E.; Jin, B.; Novotny, A., Relative entropies, suitable weak solutions, and weak-strong uniqueness for the com-pressible Navier-Stokes system, J Math Fluid Mech, 14, 717-730, (2012) · Zbl 1256.35054 · doi:10.1007/s00021-011-0091-9
[10] Feireisl, E.; Lu, Y.; Malek, J., On PDE analysis of flows of quasi-incompressible fluids, ZAMM Z Angew Math Mech, 96, 491-508, (2016) · Zbl 07775036 · doi:10.1002/zamm.201400229
[11] Feireisl, E.; Novotny, A.; Sun, Y., A regularity criterion for the weak solutions to the Navier-Stokes-Fourier system, Arch Ration Mech Anal, 212, 219-239, (2014) · Zbl 1293.35239 · doi:10.1007/s00205-013-0697-6
[12] Feireisl, E.; Zhang, P., Quasi-neutral limit for a model of viscous plasma, Arch Ration Mech Anal, 197, 271-295, (2010) · Zbl 1198.35194 · doi:10.1007/s00205-010-0317-7
[13] Galdi G P. An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems, 2nd ed. Springer Monographs in Mathematics. New York: Springer, 2011 · Zbl 1245.35002 · doi:10.1007/978-0-387-09620-9
[14] Germain, P., Weak-strong uniqueness for the isentropic compressible Navier-Stokes system, J Math Fluid Mech, 13, 137-146, (2010) · Zbl 1270.35342 · doi:10.1007/s00021-009-0006-1
[15] Maury, B., Prise en compte de la congestion dans les modeles de mouvements de foules, (2011)
[16] Perrin, C.; Zatorska, E., Free/congested two-phase model from weak solutions to multi-dimensional compressible Navier-Stokes equations, Comm Partial Differential Equations, 40, 1558-1589, (2015) · Zbl 1331.35265 · doi:10.1080/03605302.2015.1014560
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.