×

Exact traveling wave solutions of one-dimensional parabolic-parabolic models of chemotaxis. (English) Zbl 1402.35064

Summary: In this paper, we consider three different one-dimensional parabolic-parabolic systems of chemotaxis. For these systems, we obtain the exact analytical solutions in terms of traveling wave variables. Not all solutions obtained possess an adequate physical and biological interpretation. However, some solutions seem interesting, and a more detailed analysis is possible in a future study.

MSC:

35C07 Traveling wave solutions
92C17 Cell movement (chemotaxis, etc.)
35K40 Second-order parabolic systems
35K57 Reaction-diffusion equations

References:

[1] Patlak, C. S., “RandomWalk with Persistence and External Bias,”, Bull. Math. Biophys, 15, 311-338, (1953) · Zbl 1296.82044 · doi:10.1007/BF02476407
[2] Keller, E. F.; Segel, L. A., Initiation of Slime Mold Aggregation Viewed as an Instability,”, J. Theor. Biol, 26, 399-415, (1970) · Zbl 1170.92306 · doi:10.1016/0022-5193(70)90092-5
[3] Keller, E. F.; Segel, L. A., Model for Chemotaxis,”, J. Theor. Biol, 30, 225-234, (1971) · Zbl 1170.92307 · doi:10.1016/0022-5193(71)90050-6
[4] Keller, E. F.; Segel, L. A., “Traveling Bands of Chemotactic Bacteria: A Theoretical Analysis,”, J. Theor. Biol, 30, 235-248, (1971) · Zbl 1170.92308 · doi:10.1016/0022-5193(71)90051-8
[5] D. Horstmann, From 1970 Until Present: the Keller-Segel Model in Chemotaxis and Its Consequences (Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig, 2003). · Zbl 1071.35001
[6] T. Suzuki, Free Energy and Self-Interacting Particles (Birkhuser, Boston, 2005). · Zbl 1082.35006 · doi:10.1007/0-8176-4436-9
[7] B. Perthame, Transport Equations in Biology (Birkhuser, Basel, 2007). · Zbl 1185.92006
[8] Hillen, T.; Painter, K. J., “A Users Guide to PDE Models for Chemotaxis,”, J. Math. Biol, 58, 183-217, (2009) · Zbl 1161.92003 · doi:10.1007/s00285-008-0201-3
[9] Perthame, B., “PDE Models for Chemotactic Movements: Parabolic, Hyperbolic and Kinetic,”, Appl. Math, 49, 539-564, (2004) · Zbl 1099.35157 · doi:10.1007/s10492-004-6431-9
[10] Blanchet, A.; Dolbeault, J.; Perthame, B., “Two-Dimensional Keller-Segel Model: Optimal Critical Mass and Qualitative Properties of the Solutions,”, Electronic Journal of Differential Equations, Texas State University, Department of Mathematics, 44, 1-32, (2006) · Zbl 1112.35023
[11] Blanchet, A.; Laurençot, P., “The Parabolic-Parabolic Keller-Segel System with Critical Diffusion as a Gradient Flow in Rd, d ≥ 3,”, Communications in Partial Differential Equations, 38, 658-686, (2013) · Zbl 1282.35202 · doi:10.1080/03605302.2012.757705
[12] Blanchet, A.; Carrillo, J. A.; Kinderlehrer, D.; Kowalczyk, M.; Laurençot, P.; Lisini, S., “A Hybrid Variational Principle for the Keller-Segel System in R2,”, ESAIM: M2AN, 49, 1553-1576, (2015) · Zbl 1334.35086 · doi:10.1051/m2an/2015021
[13] Ni, W.-M., “Diffusion, Cross-Diffusion, and Their Spike-Layer Steady States,”, Notices Amer. Math. Soc, 45, 9-18, (1998) · Zbl 0917.35047
[14] Li, T.; Wang, Z. A., Nonlinear Stability of Large Amplitude Viscous Shock Waves of a Generalized Hyperbolic-Parabolic System Arising in Chemotaxis, Math. Models Methods Appl. Sci, 20, 1967-1998, (2010) · Zbl 1213.35081 · doi:10.1142/S0218202510004830
[15] Wang, Z. A., “Mathematics of Traveling Waves in Chemotaxis,”, Discrete Cont. Dyn. B, 18, 601-641, (2013) · Zbl 1277.35006 · doi:10.3934/dcdsb.2013.18.601
[16] Nagai, T.; Ikeda, T., “Traveling Waves in a Chemotactic Model,”, J. Math. Biol, 30, 169-184, (1991) · Zbl 0742.92001 · doi:10.1007/BF00160334
[17] Ebihara, Y.; Furusho, Y.; Nagai, T., Singular Solution of Traveling Waves in a Chemotactic Model,”, Bull. Kyushu Inst. Tech, 39, 29-38, (1992) · Zbl 0762.92019
[18] H. Bateman and A. Erdélyi, Higher Transcendental Functions, V. 2 (New York, Toronto, London, McGraw-Hill Book Company, INC 1953). · Zbl 0143.29202
[19] G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge, England: Cambridge University Press, 1944). · Zbl 0063.08184
[20] P. J. Olver, Applications of Lie Groups to Differential Equations (Springer, 1986). (Mir, Moscow, 1989). · Zbl 0743.58003
[21] V. F. Zaitsev and A. D. Polyanin, Handbook on Ordinary Differential Equations (Fizmatlit, Moscow, 2001). · Zbl 1049.35059
[22] Nossal, R., “Boundary Movement of Chemotactic Bacterial Populations,”, Math. Biosci, 13, 397-406, (1972) · Zbl 0337.92017 · doi:10.1016/0025-5564(72)90058-2
[23] Rosen, G., “Theoretical Significance of the Condition Delta = 2mu in Bacterial Chemotaxis,”, Bull. Math. Biol, 45, 151-153, (1983) · Zbl 0505.92025
[24] Winkler, M., “Global Solutions in a Fully Parabolic Chemotaxis System with Singular Sensitivity,”, Math. Methods Appl. Sci, 34, 176-190, (2011) · Zbl 1291.92018 · doi:10.1002/mma.1346
[25] M. Shubina, “Painlevé Analysis for two 1D Parabolic-Parabolic Models of Chemotaxis; Some Travelling Wave Solutions,” arXiv:1607.00349 [nlin.SI].
[26] Childress, S.; Percus, J. K., “Nonlinear Aspects of Chemotaxis,”, Math. Biosci, 56, 217-237, (1981) · Zbl 0481.92010 · doi:10.1016/0025-5564(81)90055-9
[27] Osaki, K.; Yagi, A., “Finite Dimensional Attractor for One-Dimensional Keller-Segel Equations,”, Funk.Ekvacioj, 44, 441-469, (2001) · Zbl 1145.37337
[28] Hillen, T.; Potapov, A., “The One-Dimensional Chemotaxis Model: Global Existence and Asymptotic Profile,”, Math. Meth. Appl. Sci, 27, 1783-1801, (2004) · Zbl 1081.92005 · doi:10.1002/mma.569
[29] Jäger, W.; Luckhaus, S., “On Explosions of Solutions to a System of Partial Differential Equations Modelling Chemotaxis,”, Trans. Am. Math. Soc, 329, 819-824, (1992) · Zbl 0746.35002 · doi:10.1090/S0002-9947-1992-1046835-6
[30] Nagai, T.; Senba, T.; Yoshida, K., “Application of the Trudinger-Moser Inequality to a Parabolic System of Chemotaxis,”, Funk.Ekvacioj, 40, 411-433, (1997) · Zbl 0901.35104
[31] Corrias, L.; Escobedo, M.; Matos, J., “Existence, Uniqueness and Asymptotic Behavior of the Solutions to the Fully Parabolic Keller-Segel System in the Plane,”, J. Differ. Equations, 257, 1840-1878, (2014) · Zbl 1297.35033 · doi:10.1016/j.jde.2014.05.019
[32] Tao, Y.; Winkler, M., “Boundedness in a Quasilinear Parabolic-Parabolic Keller-Segel System with Subcritical Sensitivity,”, J. Differ. Equations, 252, 692-715, (2012) · Zbl 1382.35127 · doi:10.1016/j.jde.2011.08.019
[33] Fatkullin, I., A Study of Blow-Ups in the Keller-Segel Model of Chemotaxis,”, Nonlinearity, 26, 81-94, (2013) · Zbl 1322.35057 · doi:10.1088/0951-7715/26/1/81
[34] Tupchiev, V. A.; Fomina, N. A., “On a Correctness of Two-Dimensional Boundary Value Problem for a System of Equations of Chemotaxis,”, Matem Mod, 13, 95-106, (2001) · Zbl 1091.35512
[35] Shubina, M., “The 1D Parabolic-Parabolic Patlak-Keller-Segel Model of Chemotaxis: The Particular Integrable Case and Soliton Solution,”, J. Math. Phys, 57, 091501, (2016) · Zbl 1347.92014 · doi:10.1063/1.4962917
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.