×

Volumes in the uniform infinite planar triangulation: from skeletons to generating functions. (English) Zbl 1402.05193

Summary: We develop a method to compute the generating function of the number of vertices inside certain regions of the Uniform Infinite Planar Triangulation (UIPT). The computations are mostly combinatorial in flavour and the main tool is the decomposition of the UIPT into layers, called the skeleton decomposition, introduced by M. A. Krikun [Zap. Nauchn. Semin. POMI 307, 141–174, 282–283 (2005; Zbl 1074.60027); translation in J. Math. Sci., New York 131, No. 2, 5520–5537 (2005)]. In particular, we get explicit formulas for the generating functions of the number of vertices inside hulls (or completed metric balls) centred around the root, and the number of vertices inside geodesic slices of these hulls. We also recover known results about the scaling limit of the volume of hulls previously obtained by N. Curien and J.-F. Le Gall by studying the peeling process of the UIPT in [Ann. Inst. Henri Poincaré, Probab. Stat. 53, No. 1, 322–357 (2017; Zbl 1358.05255)].

MSC:

05C80 Random graphs (graph-theoretic aspects)
60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
60F17 Functional limit theorems; invariance principles

References:

[1] Abraham, C., Rescaled bipartite planar maps converge to the Brownian map, Ann. Inst. Henri Poincaré Probab. Stat., 52, 575-595, (2016) · Zbl 1375.60034 · doi:10.1214/14-AIHP657
[2] Addario-Berry, L.; Albenque, M., The scaling limit of random simple triangulations and random simple quadrangulations, Ann. Probab., 45, 2767-2825, (2017) · Zbl 1417.60022 · doi:10.1214/16-AOP1124
[3] Ambjørn, J.; Durhuus, B.; Jonsson, T., Quantum Geometry: A Statistical Field Theory Approach, (1997), Cambridge University Press · Zbl 0993.82500
[4] Ambjørn, J.; Watabiki, Y., Scaling in quantum gravity, Nuclear Phys. B, 445, 129-142, (1995) · Zbl 1006.83015 · doi:10.1016/0550-3213(95)00154-K
[5] Angel, O., Growth and percolation on the uniform infinite planar triangulation, Geom. Funct. Anal., 13, 935-974, (2003) · Zbl 1039.60085 · doi:10.1007/s00039-003-0436-5
[6] Angel, O.; Curien, N., Percolations on random maps I: Half-plane models, Ann. Inst. Henri Poincaré Probab. Stat., 51, 405-431, (2015) · Zbl 1315.60105 · doi:10.1214/13-AIHP583
[7] Angel, O.; Schramm, O., Uniform infinite planar triangulations, Comm. Math. Phys., 241, 191-213, (2003) · Zbl 1098.60010 · doi:10.1007/s00220-003-0932-3
[8] Benjamini, I.; Curien, N., Simple random walk on the uniform infinite planar quadrangulation: Subdiffusivity via pioneer points, Geom. Funct. Anal., 23, 501-531, (2013) · Zbl 1274.60143 · doi:10.1007/s00039-013-0212-0
[9] Bertoin, J.; Curien, N.; Kortchemski, I., Ann. Probab., 46, 207-260, (2018) · Zbl 1447.60058 · doi:10.1214/17-AOP1183
[10] Bettinelli, J.; Jacob, E.; Miermont, G., The scaling limit of uniform random plane maps, via the Ambjørn-Budd bijection, Electron. J. Probab., 19, (2014) · Zbl 1320.60088
[11] Bouttier, J.; Di Francesco, P.; Guitter, E., Planar maps as labeled mobiles, Electron. J. Combin., 11, (2004) · Zbl 1060.05045
[12] Budd, T., The peeling process of infinite Boltzmann planar maps, Electron. J. Combin., 23, (2016) · Zbl 1331.05192
[13] Chassaing, P.; Schaeffer, G., Random planar lattices and integrated superBrownian excursion, Probab. Theory Rel. Fields, 128, 161-212, (2004) · Zbl 1041.60008 · doi:10.1007/s00440-003-0297-8
[14] Cori, R.; Vauquelin, B., Planar maps are well labeled trees, Canad. J. Math., 33, 1023-1042, (1981) · Zbl 0415.05020 · doi:10.4153/CJM-1981-078-2
[15] Curien, N., A glimpse of the conformal structure of random planar maps, Comm. Math. Phys., 333, 1417-1463, (2015) · Zbl 1356.60165 · doi:10.1007/s00220-014-2196-5
[16] Curien, N.; Le Gall, J.-F., (2015)
[17] Curien, N.; Le Gall, J.-F., Scaling limits for the peeling process on random maps, Ann. Inst. Henri Poincaré Probab. Stat., 53, 322-357, (2017) · Zbl 1358.05255 · doi:10.1214/15-AIHP718
[18] Curien, N.; Le Gall, J.-F., The hull process of the Brownian plane, Probab. Theory Rel. Fields, 166, 147-209, (2019)
[19] Flajolet, P.; Sedgewick, R., Analytic Combinatorics, (2009), Cambridge University Press · Zbl 1165.05001
[20] Krikun, M., Uniform infinite planar triangulation and related time-reversed critical branching process, J. Math. Sci., 131, 5520-5537, (2005) · Zbl 1074.60027 · doi:10.1007/s10958-005-0424-4
[21] Krikun, M., (2005)
[22] Le Gall, J.-F., Uniqueness and universality of the Brownian map, Ann. Probab., 41, 2880-2960, (2013) · Zbl 1282.60014 · doi:10.1214/12-AOP792
[23] Le Gall, J.-F., (2014)
[24] Ménard, L.; Nolin, P., Electron. J. Probab., 19, (2014) · Zbl 1300.60114
[25] Miermont, G., The Brownian map is the scaling limit of uniform random plane quadrangulations, Acta Math., 210, 319-401, (2013) · Zbl 1278.60124 · doi:10.1007/s11511-013-0096-8
[26] Miermont, G., (2014)
[27] Miller, J.; Sheffield, S., (2015)
[28] Richier, L., Universal aspects of critical percolation on random half-planar maps, Electron. J. Probab., 20, (2015) · Zbl 1329.05267
[29] Schaeffer, G., (1998)
[30] Watabiki, Y., Construction of non-critical string field theory by transfer matrix formalism in dynamical triangulation, Nuclear Phys. B, 441, 119-163, (1995) · Zbl 0990.81657 · doi:10.1016/0550-3213(95)00010-P
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.